
Web Ontology Language: OWL

Bojan Furlan

A Semantic Web Primer,

G. Antoniou, F. van Harmelen

Requirements for Ontology Languages

 Ontology languages allow users to write
explicit, formal conceptualizations of domain
models

 The main requirements are:
– a well-defined syntax

– efficient reasoning support

– a formal semantics

– sufficient expressive power

– convenience of expression

Tradeoff between Expressive Power
and Efficient Reasoning Support

 The richer the language is, the more
inefficient the reasoning support becomes

 Sometimes it crosses the border of
noncomputability

 We need a compromise:
– A language supported by reasonably efficient

reasoners

– A language that can express large classes of
ontologies and knowledge.

Reasoning About Knowledge in
Ontology Languages

 Class membership

– If x is an instance of a class C, and C is a

subclass of D, then we can infer that x is an

instance of D

 Equivalence of classes

– If class A is equivalent to class B, and class B is

equivalent to class C, then A is equivalent to C,

too

Reasoning About Knowledge in
Ontology Languages (2)

 Consistency
– X instance of classes A and B, but A and B are

disjoint

– This is an indication of an error in the ontology

 Classification
– Certain property-value pairs are a sufficient

condition for membership in a class A; if an
individual x satisfies such conditions, we can
conclude that x must be an instance of A
 (X teaches Course => X is Lecturer)

Uses for Reasoning

 Reasoning support is important for

– checking the consistency of the ontology and the knowledge

– checking for unintended relationships between classes

– automatically classifying instances in classes

 Checks like the preceding ones are valuable for

– designing large ontologies, where multiple authors are

involved

– integrating and sharing ontologies from various sources

Reasoning Support for OWL

 Semantics is a prerequisite for reasoning support

 Formal semantics and reasoning support are usually
provided by

– mapping an ontology language to a known logical formalism

– using automated reasoners that already exist for those
formalisms

 OWL is (partially) mapped on a description logic, and
makes use of reasoners such as FaCT and RACER

 Description logics are a subset of predicate logic for
which efficient reasoning support is possible

Limitations of the Expressive Power
of RDF Schema

 Local scope of properties

– rdfs:range defines the range of a property (e.g.

eats) for all classes

– In RDF Schema we cannot declare range

restrictions that apply to some classes only

– E.g. we cannot say that cows eat only plants,

while other animals may eat meat, too

Limitations of the Expressive Power
of RDF Schema (2)

 Disjointness of classes
– Sometimes we wish to say that classes are

disjoint (e.g. male and female)

 Boolean combinations of classes
– Sometimes we wish to build new classes by

combining other classes using union, intersection,
and complement

– E.g. person is the disjoint union of the classes
male and female

Limitations of the Expressive Power
of RDF Schema (3)

 Cardinality restrictions

– E.g. a person has exactly two parents, a course is

taught by at least one lecturer

 Special characteristics of properties

– Transitive property (like “greater than”)

– Unique property (like “is mother of”)

– A property is the inverse of another property (like

“eats” and “is eaten by”)

Combining OWL with RDF Schema

 Ideally, OWL would extend RDF Schema

– Consistent with the layered architecture of the

Semantic Web

 But simply extending RDF Schema would

work against obtaining expressive power and

efficient reasoning

– Combining RDF Schema with logic leads to

uncontrollable computational properties

Three Species of OWL

 W3C’sWeb Ontology Working Group defined

OWL as three different sublanguages:

– OWL Full

– OWL DL

– OWL Lite

 Each sublanguage geared toward fulfilling

different aspects of requirements

OWL Compatibility with RDF Schema

 All varieties of OWL use
RDF for their syntax

 Instances are declared
as in RDF, using RDF
descriptions

 and typing information
OWL constructors are
specialisations of their
RDF counterparts

OWL Compatibility with RDF Schema (2)

 Semantic Web design aims at downward

compatibility with corresponding reuse of

software across the various layers

 The advantage of full downward compatibility

for OWL is only achieved for OWL Full, at the

cost of computational intractability

OWL Syntactic Varieties

 OWL builds on RDF and uses RDF’s XML-based

syntax

 Other syntactic forms for OWL have also been

defined:

– An alternative, more readable XML-based syntax

– An abstract syntax, that is much more compact and

readable than the XML languages

– A graphic syntax based on the conventions of UML

OWL XML/RDF Syntax: Header

<rdf:RDF

xmlns:owl ="http://www.w3.org/2002/07/owl#"

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-
schema#"

xmlns:xsd ="http://www.w3.org/2001/
XLMSchema#">

 An OWL ontology may start with a collection of
assertions for housekeeping purposes using
owl:Ontology element

owl:Ontology

<owl:Ontology rdf:about="">

<rdfs:comment>An example OWL ontology
</rdfs:comment>

<owl:priorVersion

rdf:resource="http://www.mydomain.org/uni-ns-old"/>

<owl:imports

rdf:resource="http://www.mydomain.org/persons"/>

<rdfs:label>University Ontology</rdfs:label>

</owl:Ontology>

 owl:imports is a transitive property

Classes

 Classes are defined using owl:Class
– owl:Class is a subclass of rdfs:Class

 Disjointness is defined using owl:disjointWith

<owl:Class rdf:about="#associateProfessor">

<owl:disjointWith rdf:resource="#professor"/>

<owl:disjointWith
rdf:resource="#assistantProfessor"/>

</owl:Class>

Classes (2)

 owl:equivalentClass defines equivalence of
classes

<owl:Class rdf:ID="faculty">

<owl:equivalentClass rdf:resource=
"#academicStaffMember"/>

</owl:Class>

 owl:Thing is the most general class, which
contains everything

 owl:Nothing is the empty class

Properties

 In OWL there are two kinds of properties

– Object properties, which relate objects to

other objects

 E.g. is-TaughtBy, supervises

– Data type properties, which relate objects to

datatype values

 E.g. phone, title, age, etc.

Datatype Properties

 OWL makes use of XML Schema data types,

using the layered architecture of the SW

<owl:DatatypeProperty rdf:ID="age">

<rdfs:range rdf:resource=

"http://www.w3.org/2001/XLMSchema

#nonNegativeInteger"/>

</owl:DatatypeProperty>

Object Properties

 User-defined data types

<owl:ObjectProperty rdf:ID="isTaughtBy">

<owl:domain rdf:resource="#course"/>

<owl:range rdf:resource=

"#academicStaffMember"/>

</owl:ObjectProperty>

Inverse Properties

<owl:ObjectProperty rdf:ID="teaches">

<rdfs:range rdf:resource="#course"/>

<rdfs:domain rdf:resource=

"#academicStaffMember"/>

<owl:inverseOf rdf:resource="#isTaughtBy"/>

</owl:ObjectProperty>

Equivalent Properties

owl:equivalentProperty

<owl:ObjectProperty rdf:ID="lecturesIn">

<owl:equivalentProperty

rdf:resource="#teaches"/>

</owl:ObjectProperty>

Property Restrictions

 In OWL we can declare that the class C

satisfies certain conditions

– All instances of C satisfy the conditions

 This is equivalent to saying that C is subclass

of a class C', where C' collects all objects

that satisfy the conditions

– C' can remain anonymous

Property Restrictions (2)

 A (restriction) class is achieved through an

owl:Restriction element

 This element contains an owl:onProperty

element and one or more restriction

declarations

 One type defines cardinality restrictions (at

least one, at most 3,…)

Property Restrictions (3)

 The other type defines restrictions on the

kinds of values the property may take

– owl:allValuesFrom specifies universal

quantification

– owl:someValuesFrom specifies existential

quantification

– owl:hasValue specifies a specific value

owl:allValuesFrom

<owl:Class rdf:about="#firstYearCourse">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#isTaughtBy"/>

<owl:allValuesFrom
rdf:resource="#Professor"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

owl:allValuesFrom (illustration)

owl:someValuesFrom

<owl:Class rdf:about="#academicStaffMember">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#teaches"/>

<owl:someValuesFrom rdf:resource=
"#undergraduateCourse"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

owl:someValuesFrom (illustration)

owl:hasValue

<owl:Class rdf:about="#mathCourse">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource=
"#isTaughtBy"/>

<owl:hasValue rdf:resource=
"#949352"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

owl:hasValue (illustration)

Cardinality Restrictions

 We can specify minimum and maximum

number using owl:minCardinality and

owl:maxCardinality

 It is possible to specify a precise number by

using the same minimum and maximum

number

 For convenience, OWL offers also

owl:cardinality

Cardinality Restrictions (2)

<owl:Class rdf:about="#course">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#isTaughtBy"/>

<owl:minCardinality rdf:datatype=
"&xsd;nonNegativeInteger">

1

</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Special Properties

 owl:TransitiveProperty (transitive property)
– E.g. “has better grade than”, “is ancestor of”

 owl:SymmetricProperty (symmetry)
– E.g. “has same grade as”, “is sibling of”

 owl:FunctionalProperty defines a property that has
at most one value for each object

– E.g. “age”, “height”, “directSupervisor”

 owl:InverseFunctionalProperty defines a property
for which two different objects cannot have the same
value

– E.g. “Social ID” (JMBG)

Special Properties (2)

<owl:ObjectProperty rdf:ID="hasSameGradeAs">

<rdf:type rdf:resource="&owl;TransitiveProperty"/>

<rdf:type rdf:resource="&owl;SymmetricProperty"/>

<rdfs:domain rdf:resource="#student"/>

<rdfs:range rdf:resource="#student"/>

</owl:ObjectProperty>

Boolean Combinations

 We can combine classes using Boolean operations
(union, intersection, complement)

<owl:Class rdf:about="#undergraduate">

<rdfs:subClassOf>

<owl:Restriction>

<owl:complementOf rdf:resource=
"#graduate"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Boolean Combinations (2)

<owl:Class rdf:ID="peopleAtUni">

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#staffMember"/>

<owl:Class rdf:about="#student"/>

</owl:unionOf>

</owl:Class>

 The new class is not a subclass of the union, but
rather equal to the union

– We have stated an equivalence of classes

Boolean Combinations (3)

<owl:Class rdf:ID="facultyInCS">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#faculty"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#belongsTo"/>

<owl:hasValue rdf:resource=
"#CSDepartment"/>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

Nesting of Boolean Operators

<owl:Class rdf:ID="adminStaff">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#staffMember"/>

<owl: Class>

<owl:complementOf>

<owl: Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#faculty"/>

<owl:Class rdf:about=#techSupportStaff"/>

</owl:unionOf>

</owl: Class>

</owl:complementOf>

</owl: Class>

</owl:intersectionOf>

</owl:Class>

Necessary And Sufficient Conditions
(Primitive and Defined Classes)

Asserted Hierarchy

 CheesyPizzais Pizza and HasTopping some Cheese

Inferred Hierarchy (reasoner)

Closure Axiom

 VegetarianPizzahasTopping some

(Vegetables or Cheese)

 Not Correct! – There are some pizzas with

vegetables that are nonVegetarian

 VegetarianPizza => hasTopping some

(Vegetables or Cheese) and only

(Vegetables or Cheese)

Enumerations with owl:oneOf

<owl:Class rdf:ID="weekdays">

<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:about="#Monday"/>

<owl:Thing rdf:about="#Tuesday"/>

<owl:Thing rdf:about="#Wednesday"/>

<owl:Thing rdf:about="#Thursday"/>

<owl:Thing rdf:about="#Friday"/>

<owl:Thing rdf:about="#Saturday"/>

<owl:Thing rdf:about="#Sunday"/>

</owl:oneOf>

</owl:Class>

Declaring Instances

 Instances of classes are declared as in RDF:

<rdf:Description rdf:ID="949352">

<rdf:type rdf:resource=
"#academicStaffMember"/>

</rdf:Description>

 Equivalently

<academicStaffMember rdf:ID="949352“/>

No Unique-Names Assumption

 OWL does not adopt the unique-names

assumption of database systems

– If two instances have a different name or ID does

not imply that they are different individuals

 E.g. Every person has at most one Mother

(functional property)

Distinct Objects

 To ensure that different individuals are

indeed recognized as such, we must

explicitly assert their inequality:

<lecturer rdf:about="949318">

<owl:differentFrom rdf:resource="949352"/>

</lecturer>

Distinct Objects (2)

 OWL provides a shorthand notation to assert the
pairwise inequality of all individuals in a given list

<owl:allDifferent>

<owl:distinctMembers rdf:parseType="Collection">

<lecturer rdf:about="949318"/>

<lecturer rdf:about="949352"/>

<lecturer rdf:about="949111"/>

</owl:distinctMembers>

</owl:allDifferent>

Open-world assumption

 We cannot conclude some statement x to be

false simply because we cannot show x to be

true

 We may not deduce falsity from the absence

of truth

 OWL uses Open-world assumption

Open-world assumption example

 Question: "Did it rain in Tokyo yesterday?"

 Answer: "I don’t know that it rained , but

that’s not enough reason to conclude that it

didn’t rain"

Closed-world assumption (CWA)

 Closed-world assumption allow deriving

falsity from the inability to derive truth

– (eg. Databases)

 Example:

– Question: " Was there a big earthquake disaster

in Tokyo yesterday? "

– Answer: " I don’t know that there was, but if there

had been such a disaster, I’d have heard about it.

Therefore I conclude that there wasn’t such a

disaster"

Covering axiom

 Eg. Person is Male or Female

Covering axiom (Example)

 Male and Female are disjoint and are
subclasses of Person

<owl:Class rdf:ID="person">

<owl:unionOf
rdf:parseType="Collection">

<owl:Class rdf:about="#male"/>

<owl:Class rdf:about="# female"/>

</owl:unionOf>

</owl:Class>

OWL DLP use

 Systems such as databases and logic-

programming systems have tended to

support closed worlds and unique names

 Knowledge representation systems and

theorem plovers support open worlds and

non-unique names

Tutorials

 Getting Started with Protege 4.x OWL,
http://protegewiki.stanford.edu/wiki/Protege4Gett
ingStarted

 Horridge M., A Practical Guide To Building OWL
Ontologies Using Protege 4 and CO-ODE Tools,
Ed 1.2, 2009.
http://owl.cs.manchester.ac.uk/tutorials/protegeo
wltutorial/

 DL Query tab,
http://protegewiki.stanford.edu/wiki/DLQueryTab

http://protegewiki.stanford.edu/wiki/Protege4GettingStarted
http://protegewiki.stanford.edu/wiki/Protege4GettingStarted
http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/
http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/
http://protegewiki.stanford.edu/wiki/DLQueryTab

