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Requirements for Ontology Languages

 Ontology languages allow users to write 
explicit, formal conceptualizations of domain 
models

 The main requirements are:
– a well-defined syntax 

– efficient reasoning support 

– a formal semantics 

– sufficient expressive power 

– convenience of expression



Tradeoff between Expressive Power 
and Efficient Reasoning Support

 The richer the language is, the more 
inefficient the reasoning support becomes

 Sometimes it crosses the border of 
noncomputability

 We need a compromise:
– A language supported by reasonably efficient 

reasoners 

– A language that can express large classes of 
ontologies and knowledge.



Reasoning About Knowledge in 
Ontology Languages

 Class membership 

– If x is an instance of a class C, and C is a 

subclass of D, then we can infer that x is an 

instance of D

 Equivalence of classes 

– If class A is equivalent to class B, and class B is 

equivalent to class C, then A is equivalent to C, 

too



Reasoning About Knowledge in 
Ontology Languages (2)

 Consistency
– X instance of classes A and B, but A and B are 

disjoint

– This is an indication of an error in the ontology

 Classification
– Certain property-value pairs are a sufficient 

condition for membership in a class A; if an 
individual x satisfies such conditions, we can 
conclude that x must be an instance of A
 (X teaches Course => X is Lecturer)



Uses for Reasoning 

 Reasoning support is important for

– checking the consistency of the ontology and the knowledge

– checking for unintended relationships between classes

– automatically classifying instances in classes

 Checks like the preceding ones are valuable for 

– designing large ontologies, where multiple authors are 

involved

– integrating and sharing ontologies from various sources



Reasoning Support for OWL

 Semantics is a prerequisite for reasoning support

 Formal semantics and reasoning support are usually 
provided by 

– mapping an ontology language to a known logical formalism

– using automated reasoners that already exist for those 
formalisms

 OWL is (partially) mapped on a description logic, and 
makes use of reasoners such as FaCT and RACER 

 Description logics are a subset of predicate logic for 
which efficient reasoning support is possible



Limitations of the Expressive Power 
of RDF Schema

 Local scope of properties

– rdfs:range defines the range of a property (e.g. 

eats) for all classes 

– In RDF Schema we cannot declare range 

restrictions that apply to some classes only 

– E.g. we cannot say that cows eat only plants, 

while other animals may eat meat, too



Limitations of the Expressive Power 
of RDF Schema (2)

 Disjointness of classes
– Sometimes we wish to say that classes are 

disjoint (e.g. male and female)

 Boolean combinations of classes
– Sometimes we wish to build new classes by 

combining other classes using union, intersection, 
and complement

– E.g. person is  the disjoint union of the classes 
male and female



Limitations of the Expressive Power 
of RDF Schema (3)

 Cardinality restrictions

– E.g. a person has exactly two parents, a course is 

taught by at least one lecturer

 Special characteristics of properties

– Transitive property (like “greater than”)

– Unique property (like “is mother of”)

– A property is the inverse of another property (like 

“eats” and “is eaten by”)



Combining OWL with RDF Schema

 Ideally, OWL would extend RDF Schema

– Consistent with the layered architecture of the 

Semantic Web

 But simply extending RDF Schema would 

work against obtaining expressive power and 

efficient reasoning 

– Combining RDF Schema with logic leads to 

uncontrollable computational properties 



Three Species of OWL

 W3C’sWeb Ontology Working Group defined 

OWL as three different sublanguages:

– OWL Full

– OWL DL

– OWL Lite

 Each sublanguage geared toward fulfilling 

different aspects of requirements



OWL Compatibility with RDF Schema

 All varieties of OWL use 
RDF for their syntax

 Instances are declared 
as in RDF, using RDF 
descriptions 

 and typing information
OWL constructors are 
specialisations of their
RDF counterparts



OWL Compatibility with RDF Schema (2)

 Semantic Web design aims at downward 

compatibility with corresponding reuse of 

software across the various layers

 The advantage of full downward compatibility 

for OWL is only achieved for OWL Full, at the 

cost of computational intractability



OWL Syntactic Varieties

 OWL builds on RDF and uses RDF’s XML-based 

syntax

 Other syntactic forms for OWL have also been 

defined:

– An alternative, more readable XML-based syntax 

– An abstract syntax, that is much more compact and 

readable than the XML languages

– A graphic syntax based on the conventions of UML



OWL XML/RDF Syntax: Header

<rdf:RDF

xmlns:owl ="http://www.w3.org/2002/07/owl#"

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-
schema#"

xmlns:xsd ="http://www.w3.org/2001/ 
XLMSchema#">

 An OWL ontology may start with a collection of 
assertions for housekeeping purposes using 
owl:Ontology element



owl:Ontology

<owl:Ontology rdf:about="">

<rdfs:comment>An example OWL ontology 
</rdfs:comment>

<owl:priorVersion

rdf:resource="http://www.mydomain.org/uni-ns-old"/>

<owl:imports

rdf:resource="http://www.mydomain.org/persons"/>

<rdfs:label>University Ontology</rdfs:label>

</owl:Ontology>

 owl:imports is a transitive property 



Classes

 Classes are defined using owl:Class
– owl:Class is a subclass of rdfs:Class

 Disjointness is defined using owl:disjointWith

<owl:Class rdf:about="#associateProfessor">

<owl:disjointWith rdf:resource="#professor"/>

<owl:disjointWith 
rdf:resource="#assistantProfessor"/>

</owl:Class>



Classes (2)

 owl:equivalentClass defines equivalence of 
classes

<owl:Class rdf:ID="faculty">

<owl:equivalentClass rdf:resource= 
"#academicStaffMember"/>

</owl:Class>

 owl:Thing is the most general class, which 
contains everything

 owl:Nothing is the empty class 



Properties

 In OWL there are two kinds of properties

– Object properties, which relate objects to 

other objects

 E.g. is-TaughtBy, supervises

– Data type properties, which relate objects to 

datatype values

 E.g. phone, title, age, etc.



Datatype Properties

 OWL makes use of XML Schema data types, 

using the layered architecture of the SW

<owl:DatatypeProperty rdf:ID="age">

<rdfs:range rdf:resource= 

"http://www.w3.org/2001/XLMSchema

#nonNegativeInteger"/>

</owl:DatatypeProperty>



Object Properties

 User-defined data types

<owl:ObjectProperty rdf:ID="isTaughtBy">

<owl:domain rdf:resource="#course"/>

<owl:range rdf:resource= 

"#academicStaffMember"/>

</owl:ObjectProperty>



Inverse Properties

<owl:ObjectProperty rdf:ID="teaches">

<rdfs:range rdf:resource="#course"/>

<rdfs:domain rdf:resource= 

"#academicStaffMember"/>

<owl:inverseOf rdf:resource="#isTaughtBy"/>

</owl:ObjectProperty>



Equivalent Properties

owl:equivalentProperty

<owl:ObjectProperty rdf:ID="lecturesIn">

<owl:equivalentProperty 

rdf:resource="#teaches"/>

</owl:ObjectProperty>



Property Restrictions

 In OWL we can declare that the class C 

satisfies certain conditions

– All instances of C satisfy the conditions

 This is equivalent to saying that C is subclass 

of a class C', where C' collects all objects 

that satisfy the conditions

– C' can remain anonymous



Property Restrictions (2)

 A (restriction) class is achieved through an 

owl:Restriction element 

 This element contains an owl:onProperty

element and one or more restriction 

declarations

 One type defines cardinality restrictions (at 

least one, at most 3,…)



Property Restrictions (3)

 The other type defines restrictions on the 

kinds of values the property may take

– owl:allValuesFrom specifies universal 

quantification 

– owl:someValuesFrom specifies existential 

quantification

– owl:hasValue specifies a specific value 



owl:allValuesFrom

<owl:Class rdf:about="#firstYearCourse">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#isTaughtBy"/>

<owl:allValuesFrom 
rdf:resource="#Professor"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>



owl:allValuesFrom (illustration)



owl:someValuesFrom

<owl:Class rdf:about="#academicStaffMember">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#teaches"/>

<owl:someValuesFrom rdf:resource= 
"#undergraduateCourse"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>



owl:someValuesFrom (illustration)



owl:hasValue

<owl:Class rdf:about="#mathCourse">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource= 
"#isTaughtBy"/>

<owl:hasValue rdf:resource= 
"#949352"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>



owl:hasValue (illustration)



Cardinality Restrictions

 We can specify minimum and maximum 

number using owl:minCardinality and 

owl:maxCardinality

 It is possible to specify a precise number by 

using the same minimum and maximum 

number

 For convenience, OWL offers also 

owl:cardinality



Cardinality Restrictions (2)

<owl:Class rdf:about="#course">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#isTaughtBy"/>

<owl:minCardinality rdf:datatype= 
"&xsd;nonNegativeInteger">

1

</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>



Special Properties

 owl:TransitiveProperty (transitive property) 
– E.g. “has better grade than”, “is ancestor of”

 owl:SymmetricProperty (symmetry)
– E.g. “has same grade as”, “is sibling of”

 owl:FunctionalProperty defines a property that has 
at most one value for each object

– E.g. “age”, “height”, “directSupervisor”

 owl:InverseFunctionalProperty defines a property 
for which two different objects cannot have the same 
value

– E.g. “Social ID” (JMBG)



Special Properties (2)

<owl:ObjectProperty rdf:ID="hasSameGradeAs">

<rdf:type rdf:resource="&owl;TransitiveProperty"/>

<rdf:type rdf:resource="&owl;SymmetricProperty"/>

<rdfs:domain rdf:resource="#student"/>

<rdfs:range rdf:resource="#student"/>

</owl:ObjectProperty>



Boolean Combinations

 We can combine classes using Boolean operations 
(union, intersection, complement)

<owl:Class rdf:about="#undergraduate">

<rdfs:subClassOf>

<owl:Restriction>

<owl:complementOf rdf:resource= 
"#graduate"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>



Boolean Combinations (2)

<owl:Class rdf:ID="peopleAtUni">

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#staffMember"/>

<owl:Class rdf:about="#student"/>

</owl:unionOf>

</owl:Class>

 The new class is not a subclass of the union, but 
rather equal to the union

– We have stated an equivalence of classes



Boolean Combinations (3)

<owl:Class rdf:ID="facultyInCS">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#faculty"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#belongsTo"/>

<owl:hasValue rdf:resource= 
"#CSDepartment"/>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>



Nesting of Boolean Operators

<owl:Class rdf:ID="adminStaff">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#staffMember"/>

<owl: Class>

<owl:complementOf>

<owl: Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#faculty"/>

<owl:Class rdf:about=#techSupportStaff"/>

</owl:unionOf>

</owl: Class>

</owl:complementOf>

</owl: Class>

</owl:intersectionOf>

</owl:Class>



Necessary And Sufficient Conditions 
(Primitive and Defined Classes)



Asserted Hierarchy

 CheesyPizzais Pizza and HasTopping some Cheese



Inferred Hierarchy (reasoner) 



Closure Axiom

 VegetarianPizzahasTopping some 

(Vegetables or Cheese)

 Not Correct! – There are some pizzas with 

vegetables that are nonVegetarian

 VegetarianPizza => hasTopping some 

(Vegetables or Cheese) and only 

(Vegetables or Cheese)





Enumerations with owl:oneOf 

<owl:Class rdf:ID="weekdays">

<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:about="#Monday"/>

<owl:Thing rdf:about="#Tuesday"/>

<owl:Thing rdf:about="#Wednesday"/>

<owl:Thing rdf:about="#Thursday"/>

<owl:Thing rdf:about="#Friday"/>

<owl:Thing rdf:about="#Saturday"/>

<owl:Thing rdf:about="#Sunday"/>

</owl:oneOf>

</owl:Class>



Declaring Instances

 Instances of classes are declared as in RDF:

<rdf:Description rdf:ID="949352">

<rdf:type rdf:resource= 
"#academicStaffMember"/>

</rdf:Description>

 Equivalently

<academicStaffMember rdf:ID="949352“/>



No Unique-Names Assumption

 OWL does not adopt the unique-names 

assumption of database systems

– If two instances have a different name or ID does 

not imply that they are different individuals

 E.g. Every person has at most one Mother 

(functional property)



Distinct Objects

 To ensure that different individuals are 

indeed recognized as such, we must 

explicitly assert their inequality:

<lecturer rdf:about="949318">

<owl:differentFrom rdf:resource="949352"/>

</lecturer>



Distinct Objects (2)

 OWL provides a shorthand notation to assert the 
pairwise inequality of all individuals in a given list

<owl:allDifferent>

<owl:distinctMembers rdf:parseType="Collection">

<lecturer rdf:about="949318"/>

<lecturer rdf:about="949352"/>

<lecturer rdf:about="949111"/>

</owl:distinctMembers>

</owl:allDifferent>



Open-world assumption

 We cannot conclude some statement x to be 

false simply because we cannot show x to be 

true

 We may not deduce falsity from the absence 

of truth

 OWL uses Open-world assumption



Open-world assumption example

 Question: "Did it rain in Tokyo yesterday?"

 Answer: "I don’t know that it rained , but 

that’s not enough reason to conclude that it 

didn’t rain"



Closed-world assumption (CWA)

 Closed-world assumption allow deriving 

falsity from the inability to derive truth 

– (eg. Databases)

 Example:

– Question: " Was there a big earthquake disaster 

in Tokyo yesterday? "

– Answer: " I don’t know that there was, but if there 

had been such a disaster, I’d have heard about it. 

Therefore I conclude that there wasn’t such a 

disaster"



Covering axiom

 Eg. Person is Male or Female



Covering axiom (Example)

 Male and Female are disjoint and are 
subclasses of Person

<owl:Class rdf:ID="person">

<owl:unionOf 
rdf:parseType="Collection">

<owl:Class rdf:about="#male"/>

<owl:Class rdf:about="# female"/>

</owl:unionOf>

</owl:Class>



OWL DLP use

 Systems such as databases and logic-

programming systems have tended to 

support closed worlds and unique names

 Knowledge representation systems and 

theorem plovers support open worlds and 

non-unique names



Tutorials

 Getting Started with Protege 4.x OWL, 
http://protegewiki.stanford.edu/wiki/Protege4Gett
ingStarted

 Horridge M., A Practical Guide To Building OWL 
Ontologies Using Protege 4 and CO-ODE Tools, 
Ed 1.2, 2009. 
http://owl.cs.manchester.ac.uk/tutorials/protegeo
wltutorial/

 DL Query tab, 
http://protegewiki.stanford.edu/wiki/DLQueryTab

http://protegewiki.stanford.edu/wiki/Protege4GettingStarted
http://protegewiki.stanford.edu/wiki/Protege4GettingStarted
http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/
http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/
http://protegewiki.stanford.edu/wiki/DLQueryTab

