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Requirements for Ontology Languages

 Ontology languages allow users to write 
explicit, formal conceptualizations of domain 
models

 The main requirements are:
– a well-defined syntax 

– efficient reasoning support 

– a formal semantics 

– sufficient expressive power 

– convenience of expression



Tradeoff between Expressive Power 
and Efficient Reasoning Support

 The richer the language is, the more 
inefficient the reasoning support becomes

 Sometimes it crosses the border of 
noncomputability

 We need a compromise:
– A language supported by reasonably efficient 

reasoners 

– A language that can express large classes of 
ontologies and knowledge.



Reasoning About Knowledge in 
Ontology Languages

 Class membership 

– If x is an instance of a class C, and C is a 

subclass of D, then we can infer that x is an 

instance of D

 Equivalence of classes 

– If class A is equivalent to class B, and class B is 

equivalent to class C, then A is equivalent to C, 

too



Reasoning About Knowledge in 
Ontology Languages (2)

 Consistency
– X instance of classes A and B, but A and B are 

disjoint

– This is an indication of an error in the ontology

 Classification
– Certain property-value pairs are a sufficient 

condition for membership in a class A; if an 
individual x satisfies such conditions, we can 
conclude that x must be an instance of A
 (X teaches Course => X is Lecturer)



Uses for Reasoning 

 Reasoning support is important for

– checking the consistency of the ontology and the knowledge

– checking for unintended relationships between classes

– automatically classifying instances in classes

 Checks like the preceding ones are valuable for 

– designing large ontologies, where multiple authors are 

involved

– integrating and sharing ontologies from various sources



Reasoning Support for OWL

 Semantics is a prerequisite for reasoning support

 Formal semantics and reasoning support are usually 
provided by 

– mapping an ontology language to a known logical formalism

– using automated reasoners that already exist for those 
formalisms

 OWL is (partially) mapped on a description logic, and 
makes use of reasoners such as FaCT and RACER 

 Description logics are a subset of predicate logic for 
which efficient reasoning support is possible



Limitations of the Expressive Power 
of RDF Schema

 Local scope of properties

– rdfs:range defines the range of a property (e.g. 

eats) for all classes 

– In RDF Schema we cannot declare range 

restrictions that apply to some classes only 

– E.g. we cannot say that cows eat only plants, 

while other animals may eat meat, too



Limitations of the Expressive Power 
of RDF Schema (2)

 Disjointness of classes
– Sometimes we wish to say that classes are 

disjoint (e.g. male and female)

 Boolean combinations of classes
– Sometimes we wish to build new classes by 

combining other classes using union, intersection, 
and complement

– E.g. person is  the disjoint union of the classes 
male and female



Limitations of the Expressive Power 
of RDF Schema (3)

 Cardinality restrictions

– E.g. a person has exactly two parents, a course is 

taught by at least one lecturer

 Special characteristics of properties

– Transitive property (like “greater than”)

– Unique property (like “is mother of”)

– A property is the inverse of another property (like 

“eats” and “is eaten by”)



Combining OWL with RDF Schema

 Ideally, OWL would extend RDF Schema

– Consistent with the layered architecture of the 

Semantic Web

 But simply extending RDF Schema would 

work against obtaining expressive power and 

efficient reasoning 

– Combining RDF Schema with logic leads to 

uncontrollable computational properties 



Three Species of OWL

 W3C’sWeb Ontology Working Group defined 

OWL as three different sublanguages:

– OWL Full

– OWL DL

– OWL Lite

 Each sublanguage geared toward fulfilling 

different aspects of requirements



OWL Compatibility with RDF Schema

 All varieties of OWL use 
RDF for their syntax

 Instances are declared 
as in RDF, using RDF 
descriptions 

 and typing information
OWL constructors are 
specialisations of their
RDF counterparts



OWL Compatibility with RDF Schema (2)

 Semantic Web design aims at downward 

compatibility with corresponding reuse of 

software across the various layers

 The advantage of full downward compatibility 

for OWL is only achieved for OWL Full, at the 

cost of computational intractability



OWL Syntactic Varieties

 OWL builds on RDF and uses RDF’s XML-based 

syntax

 Other syntactic forms for OWL have also been 

defined:

– An alternative, more readable XML-based syntax 

– An abstract syntax, that is much more compact and 

readable than the XML languages

– A graphic syntax based on the conventions of UML



OWL XML/RDF Syntax: Header

<rdf:RDF

xmlns:owl ="http://www.w3.org/2002/07/owl#"

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-
schema#"

xmlns:xsd ="http://www.w3.org/2001/ 
XLMSchema#">

 An OWL ontology may start with a collection of 
assertions for housekeeping purposes using 
owl:Ontology element



owl:Ontology

<owl:Ontology rdf:about="">

<rdfs:comment>An example OWL ontology 
</rdfs:comment>

<owl:priorVersion

rdf:resource="http://www.mydomain.org/uni-ns-old"/>

<owl:imports

rdf:resource="http://www.mydomain.org/persons"/>

<rdfs:label>University Ontology</rdfs:label>

</owl:Ontology>

 owl:imports is a transitive property 



Classes

 Classes are defined using owl:Class
– owl:Class is a subclass of rdfs:Class

 Disjointness is defined using owl:disjointWith

<owl:Class rdf:about="#associateProfessor">

<owl:disjointWith rdf:resource="#professor"/>

<owl:disjointWith 
rdf:resource="#assistantProfessor"/>

</owl:Class>



Classes (2)

 owl:equivalentClass defines equivalence of 
classes

<owl:Class rdf:ID="faculty">

<owl:equivalentClass rdf:resource= 
"#academicStaffMember"/>

</owl:Class>

 owl:Thing is the most general class, which 
contains everything

 owl:Nothing is the empty class 



Properties

 In OWL there are two kinds of properties

– Object properties, which relate objects to 

other objects

 E.g. is-TaughtBy, supervises

– Data type properties, which relate objects to 

datatype values

 E.g. phone, title, age, etc.



Datatype Properties

 OWL makes use of XML Schema data types, 

using the layered architecture of the SW

<owl:DatatypeProperty rdf:ID="age">

<rdfs:range rdf:resource= 

"http://www.w3.org/2001/XLMSchema

#nonNegativeInteger"/>

</owl:DatatypeProperty>



Object Properties

 User-defined data types

<owl:ObjectProperty rdf:ID="isTaughtBy">

<owl:domain rdf:resource="#course"/>

<owl:range rdf:resource= 

"#academicStaffMember"/>

</owl:ObjectProperty>



Inverse Properties

<owl:ObjectProperty rdf:ID="teaches">

<rdfs:range rdf:resource="#course"/>

<rdfs:domain rdf:resource= 

"#academicStaffMember"/>

<owl:inverseOf rdf:resource="#isTaughtBy"/>

</owl:ObjectProperty>



Equivalent Properties

owl:equivalentProperty

<owl:ObjectProperty rdf:ID="lecturesIn">

<owl:equivalentProperty 

rdf:resource="#teaches"/>

</owl:ObjectProperty>



Property Restrictions

 In OWL we can declare that the class C 

satisfies certain conditions

– All instances of C satisfy the conditions

 This is equivalent to saying that C is subclass 

of a class C', where C' collects all objects 

that satisfy the conditions

– C' can remain anonymous



Property Restrictions (2)

 A (restriction) class is achieved through an 

owl:Restriction element 

 This element contains an owl:onProperty

element and one or more restriction 

declarations

 One type defines cardinality restrictions (at 

least one, at most 3,…)



Property Restrictions (3)

 The other type defines restrictions on the 

kinds of values the property may take

– owl:allValuesFrom specifies universal 

quantification 

– owl:someValuesFrom specifies existential 

quantification

– owl:hasValue specifies a specific value 



owl:allValuesFrom

<owl:Class rdf:about="#firstYearCourse">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#isTaughtBy"/>

<owl:allValuesFrom 
rdf:resource="#Professor"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>



owl:allValuesFrom (illustration)



owl:someValuesFrom

<owl:Class rdf:about="#academicStaffMember">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#teaches"/>

<owl:someValuesFrom rdf:resource= 
"#undergraduateCourse"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>



owl:someValuesFrom (illustration)



owl:hasValue

<owl:Class rdf:about="#mathCourse">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource= 
"#isTaughtBy"/>

<owl:hasValue rdf:resource= 
"#949352"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>



owl:hasValue (illustration)



Cardinality Restrictions

 We can specify minimum and maximum 

number using owl:minCardinality and 

owl:maxCardinality

 It is possible to specify a precise number by 

using the same minimum and maximum 

number

 For convenience, OWL offers also 

owl:cardinality



Cardinality Restrictions (2)

<owl:Class rdf:about="#course">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#isTaughtBy"/>

<owl:minCardinality rdf:datatype= 
"&xsd;nonNegativeInteger">

1

</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>



Special Properties

 owl:TransitiveProperty (transitive property) 
– E.g. “has better grade than”, “is ancestor of”

 owl:SymmetricProperty (symmetry)
– E.g. “has same grade as”, “is sibling of”

 owl:FunctionalProperty defines a property that has 
at most one value for each object

– E.g. “age”, “height”, “directSupervisor”

 owl:InverseFunctionalProperty defines a property 
for which two different objects cannot have the same 
value

– E.g. “Social ID” (JMBG)



Special Properties (2)

<owl:ObjectProperty rdf:ID="hasSameGradeAs">

<rdf:type rdf:resource="&owl;TransitiveProperty"/>

<rdf:type rdf:resource="&owl;SymmetricProperty"/>

<rdfs:domain rdf:resource="#student"/>

<rdfs:range rdf:resource="#student"/>

</owl:ObjectProperty>



Boolean Combinations

 We can combine classes using Boolean operations 
(union, intersection, complement)

<owl:Class rdf:about="#undergraduate">

<rdfs:subClassOf>

<owl:Restriction>

<owl:complementOf rdf:resource= 
"#graduate"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>



Boolean Combinations (2)

<owl:Class rdf:ID="peopleAtUni">

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#staffMember"/>

<owl:Class rdf:about="#student"/>

</owl:unionOf>

</owl:Class>

 The new class is not a subclass of the union, but 
rather equal to the union

– We have stated an equivalence of classes



Boolean Combinations (3)

<owl:Class rdf:ID="facultyInCS">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#faculty"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#belongsTo"/>

<owl:hasValue rdf:resource= 
"#CSDepartment"/>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>



Nesting of Boolean Operators

<owl:Class rdf:ID="adminStaff">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#staffMember"/>

<owl: Class>

<owl:complementOf>

<owl: Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#faculty"/>

<owl:Class rdf:about=#techSupportStaff"/>

</owl:unionOf>

</owl: Class>

</owl:complementOf>

</owl: Class>

</owl:intersectionOf>

</owl:Class>



Necessary And Sufficient Conditions 
(Primitive and Defined Classes)



Asserted Hierarchy

 CheesyPizzais Pizza and HasTopping some Cheese



Inferred Hierarchy (reasoner) 



Closure Axiom

 VegetarianPizzahasTopping some 

(Vegetables or Cheese)

 Not Correct! – There are some pizzas with 

vegetables that are nonVegetarian

 VegetarianPizza => hasTopping some 

(Vegetables or Cheese) and only 

(Vegetables or Cheese)





Enumerations with owl:oneOf 

<owl:Class rdf:ID="weekdays">

<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:about="#Monday"/>

<owl:Thing rdf:about="#Tuesday"/>

<owl:Thing rdf:about="#Wednesday"/>

<owl:Thing rdf:about="#Thursday"/>

<owl:Thing rdf:about="#Friday"/>

<owl:Thing rdf:about="#Saturday"/>

<owl:Thing rdf:about="#Sunday"/>

</owl:oneOf>

</owl:Class>



Declaring Instances

 Instances of classes are declared as in RDF:

<rdf:Description rdf:ID="949352">

<rdf:type rdf:resource= 
"#academicStaffMember"/>

</rdf:Description>

 Equivalently

<academicStaffMember rdf:ID="949352“/>



No Unique-Names Assumption

 OWL does not adopt the unique-names 

assumption of database systems

– If two instances have a different name or ID does 

not imply that they are different individuals

 E.g. Every person has at most one Mother 

(functional property)



Distinct Objects

 To ensure that different individuals are 

indeed recognized as such, we must 

explicitly assert their inequality:

<lecturer rdf:about="949318">

<owl:differentFrom rdf:resource="949352"/>

</lecturer>



Distinct Objects (2)

 OWL provides a shorthand notation to assert the 
pairwise inequality of all individuals in a given list

<owl:allDifferent>

<owl:distinctMembers rdf:parseType="Collection">

<lecturer rdf:about="949318"/>

<lecturer rdf:about="949352"/>

<lecturer rdf:about="949111"/>

</owl:distinctMembers>

</owl:allDifferent>



Open-world assumption

 We cannot conclude some statement x to be 

false simply because we cannot show x to be 

true

 We may not deduce falsity from the absence 

of truth

 OWL uses Open-world assumption



Open-world assumption example

 Question: "Did it rain in Tokyo yesterday?"

 Answer: "I don’t know that it rained , but 

that’s not enough reason to conclude that it 

didn’t rain"



Closed-world assumption (CWA)

 Closed-world assumption allow deriving 

falsity from the inability to derive truth 

– (eg. Databases)

 Example:

– Question: " Was there a big earthquake disaster 

in Tokyo yesterday? "

– Answer: " I don’t know that there was, but if there 

had been such a disaster, I’d have heard about it. 

Therefore I conclude that there wasn’t such a 

disaster"



Covering axiom

 Eg. Person is Male or Female



Covering axiom (Example)

 Male and Female are disjoint and are 
subclasses of Person

<owl:Class rdf:ID="person">

<owl:unionOf 
rdf:parseType="Collection">

<owl:Class rdf:about="#male"/>

<owl:Class rdf:about="# female"/>

</owl:unionOf>

</owl:Class>



OWL DLP use

 Systems such as databases and logic-

programming systems have tended to 

support closed worlds and unique names

 Knowledge representation systems and 

theorem plovers support open worlds and 

non-unique names



Tutorials

 Getting Started with Protege 4.x OWL, 
http://protegewiki.stanford.edu/wiki/Protege4Gett
ingStarted

 Horridge M., A Practical Guide To Building OWL 
Ontologies Using Protege 4 and CO-ODE Tools, 
Ed 1.2, 2009. 
http://owl.cs.manchester.ac.uk/tutorials/protegeo
wltutorial/

 DL Query tab, 
http://protegewiki.stanford.edu/wiki/DLQueryTab

http://protegewiki.stanford.edu/wiki/Protege4GettingStarted
http://protegewiki.stanford.edu/wiki/Protege4GettingStarted
http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/
http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/
http://protegewiki.stanford.edu/wiki/DLQueryTab

