
Web Ontology Language: OWL

Bojan Furlan

A Semantic Web Primer,

G. Antoniou, F. van Harmelen

Requirements for Ontology Languages

 Ontology languages allow users to write
explicit, formal conceptualizations of domain
models

 The main requirements are:
– a well-defined syntax

– efficient reasoning support

– a formal semantics

– sufficient expressive power

– convenience of expression

Tradeoff between Expressive Power
and Efficient Reasoning Support

 The richer the language is, the more
inefficient the reasoning support becomes

 Sometimes it crosses the border of
noncomputability

 We need a compromise:
– A language supported by reasonably efficient

reasoners

– A language that can express large classes of
ontologies and knowledge.

Reasoning About Knowledge in
Ontology Languages

 Class membership

– If x is an instance of a class C, and C is a

subclass of D, then we can infer that x is an

instance of D

 Equivalence of classes

– If class A is equivalent to class B, and class B is

equivalent to class C, then A is equivalent to C,

too

Reasoning About Knowledge in
Ontology Languages (2)

 Consistency
– X instance of classes A and B, but A and B are

disjoint

– This is an indication of an error in the ontology

 Classification
– Certain property-value pairs are a sufficient

condition for membership in a class A; if an
individual x satisfies such conditions, we can
conclude that x must be an instance of A
 (X teaches Course => X is Lecturer)

Uses for Reasoning

 Reasoning support is important for

– checking the consistency of the ontology and the knowledge

– checking for unintended relationships between classes

– automatically classifying instances in classes

 Checks like the preceding ones are valuable for

– designing large ontologies, where multiple authors are

involved

– integrating and sharing ontologies from various sources

Reasoning Support for OWL

 Semantics is a prerequisite for reasoning support

 Formal semantics and reasoning support are usually
provided by

– mapping an ontology language to a known logical formalism

– using automated reasoners that already exist for those
formalisms

 OWL is (partially) mapped on a description logic, and
makes use of reasoners such as FaCT and RACER

 Description logics are a subset of predicate logic for
which efficient reasoning support is possible

Limitations of the Expressive Power
of RDF Schema

 Local scope of properties

– rdfs:range defines the range of a property (e.g.

eats) for all classes

– In RDF Schema we cannot declare range

restrictions that apply to some classes only

– E.g. we cannot say that cows eat only plants,

while other animals may eat meat, too

Limitations of the Expressive Power
of RDF Schema (2)

 Disjointness of classes
– Sometimes we wish to say that classes are

disjoint (e.g. male and female)

 Boolean combinations of classes
– Sometimes we wish to build new classes by

combining other classes using union, intersection,
and complement

– E.g. person is the disjoint union of the classes
male and female

Limitations of the Expressive Power
of RDF Schema (3)

 Cardinality restrictions

– E.g. a person has exactly two parents, a course is

taught by at least one lecturer

 Special characteristics of properties

– Transitive property (like “greater than”)

– Unique property (like “is mother of”)

– A property is the inverse of another property (like

“eats” and “is eaten by”)

Combining OWL with RDF Schema

 Ideally, OWL would extend RDF Schema

– Consistent with the layered architecture of the

Semantic Web

 But simply extending RDF Schema would

work against obtaining expressive power and

efficient reasoning

– Combining RDF Schema with logic leads to

uncontrollable computational properties

Three Species of OWL

 W3C’sWeb Ontology Working Group defined

OWL as three different sublanguages:

– OWL Full

– OWL DL

– OWL Lite

 Each sublanguage geared toward fulfilling

different aspects of requirements

OWL Compatibility with RDF Schema

 All varieties of OWL use
RDF for their syntax

 Instances are declared
as in RDF, using RDF
descriptions

 and typing information
OWL constructors are
specialisations of their
RDF counterparts

OWL Compatibility with RDF Schema (2)

 Semantic Web design aims at downward

compatibility with corresponding reuse of

software across the various layers

 The advantage of full downward compatibility

for OWL is only achieved for OWL Full, at the

cost of computational intractability

OWL Syntactic Varieties

 OWL builds on RDF and uses RDF’s XML-based

syntax

 Other syntactic forms for OWL have also been

defined:

– An alternative, more readable XML-based syntax

– An abstract syntax, that is much more compact and

readable than the XML languages

– A graphic syntax based on the conventions of UML

OWL XML/RDF Syntax: Header

<rdf:RDF

xmlns:owl ="http://www.w3.org/2002/07/owl#"

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-
schema#"

xmlns:xsd ="http://www.w3.org/2001/
XLMSchema#">

 An OWL ontology may start with a collection of
assertions for housekeeping purposes using
owl:Ontology element

owl:Ontology

<owl:Ontology rdf:about="">

<rdfs:comment>An example OWL ontology
</rdfs:comment>

<owl:priorVersion

rdf:resource="http://www.mydomain.org/uni-ns-old"/>

<owl:imports

rdf:resource="http://www.mydomain.org/persons"/>

<rdfs:label>University Ontology</rdfs:label>

</owl:Ontology>

 owl:imports is a transitive property

Classes

 Classes are defined using owl:Class
– owl:Class is a subclass of rdfs:Class

 Disjointness is defined using owl:disjointWith

<owl:Class rdf:about="#associateProfessor">

<owl:disjointWith rdf:resource="#professor"/>

<owl:disjointWith
rdf:resource="#assistantProfessor"/>

</owl:Class>

Classes (2)

 owl:equivalentClass defines equivalence of
classes

<owl:Class rdf:ID="faculty">

<owl:equivalentClass rdf:resource=
"#academicStaffMember"/>

</owl:Class>

 owl:Thing is the most general class, which
contains everything

 owl:Nothing is the empty class

Properties

 In OWL there are two kinds of properties

– Object properties, which relate objects to

other objects

 E.g. is-TaughtBy, supervises

– Data type properties, which relate objects to

datatype values

 E.g. phone, title, age, etc.

Datatype Properties

 OWL makes use of XML Schema data types,

using the layered architecture of the SW

<owl:DatatypeProperty rdf:ID="age">

<rdfs:range rdf:resource=

"http://www.w3.org/2001/XLMSchema

#nonNegativeInteger"/>

</owl:DatatypeProperty>

Object Properties

 User-defined data types

<owl:ObjectProperty rdf:ID="isTaughtBy">

<owl:domain rdf:resource="#course"/>

<owl:range rdf:resource=

"#academicStaffMember"/>

</owl:ObjectProperty>

Inverse Properties

<owl:ObjectProperty rdf:ID="teaches">

<rdfs:range rdf:resource="#course"/>

<rdfs:domain rdf:resource=

"#academicStaffMember"/>

<owl:inverseOf rdf:resource="#isTaughtBy"/>

</owl:ObjectProperty>

Equivalent Properties

owl:equivalentProperty

<owl:ObjectProperty rdf:ID="lecturesIn">

<owl:equivalentProperty

rdf:resource="#teaches"/>

</owl:ObjectProperty>

Property Restrictions

 In OWL we can declare that the class C

satisfies certain conditions

– All instances of C satisfy the conditions

 This is equivalent to saying that C is subclass

of a class C', where C' collects all objects

that satisfy the conditions

– C' can remain anonymous

Property Restrictions (2)

 A (restriction) class is achieved through an

owl:Restriction element

 This element contains an owl:onProperty

element and one or more restriction

declarations

 One type defines cardinality restrictions (at

least one, at most 3,…)

Property Restrictions (3)

 The other type defines restrictions on the

kinds of values the property may take

– owl:allValuesFrom specifies universal

quantification

– owl:someValuesFrom specifies existential

quantification

– owl:hasValue specifies a specific value

owl:allValuesFrom

<owl:Class rdf:about="#firstYearCourse">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#isTaughtBy"/>

<owl:allValuesFrom
rdf:resource="#Professor"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

owl:allValuesFrom (illustration)

owl:someValuesFrom

<owl:Class rdf:about="#academicStaffMember">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#teaches"/>

<owl:someValuesFrom rdf:resource=
"#undergraduateCourse"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

owl:someValuesFrom (illustration)

owl:hasValue

<owl:Class rdf:about="#mathCourse">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource=
"#isTaughtBy"/>

<owl:hasValue rdf:resource=
"#949352"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

owl:hasValue (illustration)

Cardinality Restrictions

 We can specify minimum and maximum

number using owl:minCardinality and

owl:maxCardinality

 It is possible to specify a precise number by

using the same minimum and maximum

number

 For convenience, OWL offers also

owl:cardinality

Cardinality Restrictions (2)

<owl:Class rdf:about="#course">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#isTaughtBy"/>

<owl:minCardinality rdf:datatype=
"&xsd;nonNegativeInteger">

1

</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Special Properties

 owl:TransitiveProperty (transitive property)
– E.g. “has better grade than”, “is ancestor of”

 owl:SymmetricProperty (symmetry)
– E.g. “has same grade as”, “is sibling of”

 owl:FunctionalProperty defines a property that has
at most one value for each object

– E.g. “age”, “height”, “directSupervisor”

 owl:InverseFunctionalProperty defines a property
for which two different objects cannot have the same
value

– E.g. “Social ID” (JMBG)

Special Properties (2)

<owl:ObjectProperty rdf:ID="hasSameGradeAs">

<rdf:type rdf:resource="&owl;TransitiveProperty"/>

<rdf:type rdf:resource="&owl;SymmetricProperty"/>

<rdfs:domain rdf:resource="#student"/>

<rdfs:range rdf:resource="#student"/>

</owl:ObjectProperty>

Boolean Combinations

 We can combine classes using Boolean operations
(union, intersection, complement)

<owl:Class rdf:about="#undergraduate">

<rdfs:subClassOf>

<owl:Restriction>

<owl:complementOf rdf:resource=
"#graduate"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Boolean Combinations (2)

<owl:Class rdf:ID="peopleAtUni">

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#staffMember"/>

<owl:Class rdf:about="#student"/>

</owl:unionOf>

</owl:Class>

 The new class is not a subclass of the union, but
rather equal to the union

– We have stated an equivalence of classes

Boolean Combinations (3)

<owl:Class rdf:ID="facultyInCS">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#faculty"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#belongsTo"/>

<owl:hasValue rdf:resource=
"#CSDepartment"/>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

Nesting of Boolean Operators

<owl:Class rdf:ID="adminStaff">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#staffMember"/>

<owl: Class>

<owl:complementOf>

<owl: Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#faculty"/>

<owl:Class rdf:about=#techSupportStaff"/>

</owl:unionOf>

</owl: Class>

</owl:complementOf>

</owl: Class>

</owl:intersectionOf>

</owl:Class>

Necessary And Sufficient Conditions
(Primitive and Defined Classes)

Asserted Hierarchy

 CheesyPizzais Pizza and HasTopping some Cheese

Inferred Hierarchy (reasoner)

Closure Axiom

 VegetarianPizzahasTopping some

(Vegetables or Cheese)

 Not Correct! – There are some pizzas with

vegetables that are nonVegetarian

 VegetarianPizza => hasTopping some

(Vegetables or Cheese) and only

(Vegetables or Cheese)

Enumerations with owl:oneOf

<owl:Class rdf:ID="weekdays">

<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:about="#Monday"/>

<owl:Thing rdf:about="#Tuesday"/>

<owl:Thing rdf:about="#Wednesday"/>

<owl:Thing rdf:about="#Thursday"/>

<owl:Thing rdf:about="#Friday"/>

<owl:Thing rdf:about="#Saturday"/>

<owl:Thing rdf:about="#Sunday"/>

</owl:oneOf>

</owl:Class>

Declaring Instances

 Instances of classes are declared as in RDF:

<rdf:Description rdf:ID="949352">

<rdf:type rdf:resource=
"#academicStaffMember"/>

</rdf:Description>

 Equivalently

<academicStaffMember rdf:ID="949352“/>

No Unique-Names Assumption

 OWL does not adopt the unique-names

assumption of database systems

– If two instances have a different name or ID does

not imply that they are different individuals

 E.g. Every person has at most one Mother

(functional property)

Distinct Objects

 To ensure that different individuals are

indeed recognized as such, we must

explicitly assert their inequality:

<lecturer rdf:about="949318">

<owl:differentFrom rdf:resource="949352"/>

</lecturer>

Distinct Objects (2)

 OWL provides a shorthand notation to assert the
pairwise inequality of all individuals in a given list

<owl:allDifferent>

<owl:distinctMembers rdf:parseType="Collection">

<lecturer rdf:about="949318"/>

<lecturer rdf:about="949352"/>

<lecturer rdf:about="949111"/>

</owl:distinctMembers>

</owl:allDifferent>

Open-world assumption

 We cannot conclude some statement x to be

false simply because we cannot show x to be

true

 We may not deduce falsity from the absence

of truth

 OWL uses Open-world assumption

Open-world assumption example

 Question: "Did it rain in Tokyo yesterday?"

 Answer: "I don’t know that it rained , but

that’s not enough reason to conclude that it

didn’t rain"

Closed-world assumption (CWA)

 Closed-world assumption allow deriving

falsity from the inability to derive truth

– (eg. Databases)

 Example:

– Question: " Was there a big earthquake disaster

in Tokyo yesterday? "

– Answer: " I don’t know that there was, but if there

had been such a disaster, I’d have heard about it.

Therefore I conclude that there wasn’t such a

disaster"

Covering axiom

 Eg. Person is Male or Female

Covering axiom (Example)

 Male and Female are disjoint and are
subclasses of Person

<owl:Class rdf:ID="person">

<owl:unionOf
rdf:parseType="Collection">

<owl:Class rdf:about="#male"/>

<owl:Class rdf:about="# female"/>

</owl:unionOf>

</owl:Class>

OWL DLP use

 Systems such as databases and logic-

programming systems have tended to

support closed worlds and unique names

 Knowledge representation systems and

theorem plovers support open worlds and

non-unique names

Tutorials

 Getting Started with Protege 4.x OWL,
http://protegewiki.stanford.edu/wiki/Protege4Gett
ingStarted

 Horridge M., A Practical Guide To Building OWL
Ontologies Using Protege 4 and CO-ODE Tools,
Ed 1.2, 2009.
http://owl.cs.manchester.ac.uk/tutorials/protegeo
wltutorial/

 DL Query tab,
http://protegewiki.stanford.edu/wiki/DLQueryTab

http://protegewiki.stanford.edu/wiki/Protege4GettingStarted
http://protegewiki.stanford.edu/wiki/Protege4GettingStarted
http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/
http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/
http://protegewiki.stanford.edu/wiki/DLQueryTab

