
Describing Web Resources in
RDF

Bojan Furlan

A Semantic Web Primer,

G. Antoniou, F. van Harmelen

Drawbacks of XML

 XML is a universal metalanguage for defining

markup

 It provides a uniform framework for interchange of

data and metadata between applications

 However, XML does not provide any means of

talking about the semantics (meaning) of data

 E.g., there is no intended meaning associated with

the nesting of tags

– It is up to each application to interpret the nesting.

Nesting of Tags in XML

David Billington is a lecturer of Discrete Maths

<course name="Discrete Maths">

 <lecturer>David Billington</lecturer>

</course>

<lecturer name="David Billington">

 <teaches>Discrete Maths</teaches>

</lecturer>

Opposite nesting, same information!

Basic Ideas of RDF

 Basic building block: object-attribute-value

triple

– It is called a statement

– Sentence about Billington is such a statement

 RDF has been given a syntax in XML

– This syntax inherits the benefits of XML

– Other syntactic representations of RDF possible

Basic Ideas of RDF (2)

 The fundamental concepts of RDF are:

– resources

– properties

– statements

Resources

 We can think of a resource as an object, a
“thing” we want to talk about
– E.g. authors, books, publishers, places, people,

hotels

 Every resource has a URI, a Universal
Resource Identifier

Properties

 Properties are a special kind of resources

 They describe relations between resources

– E.g. “written by”, “age”, “title”, etc.

 Properties are also identified by URIs

 Advantages of using URIs:

– Α global, worldwide, unique naming scheme

– Reduces the homonym problem of distributed

data representation

Statements

 Statements assert the properties of

resources

 A statement is an object-attribute-value triple

– It consists of a resource, a property, and a value

 Values can be resources or literals

– Literals are atomic values (strings)

Three Views of a Statement

 A triple

 A piece of a graph

 A piece of XML code

Thus an RDF document can be viewed as:

 A set of triples

 A graph (semantic net)

 An XML document

Statements as Triples

 (http://www.cit.gu.edu.au/~db,

 http://www.mydomain.org/site-owner,

 #David Billington)

 The triple (x,P,y) can be considered as a

logical formula P(x,y)

– Binary predicate P relates object x to object y

– RDF offers only binary predicates (properties)

Statements as Directed Graph

 A directed graph with labeled nodes and arcs
– from the resource (the subject of the statement)

– to the value (the object of the statement)

 Known in AI as a semantic net

 The value of a statement may be a resource
– Ιt may be linked to other resources

A Set of Triples as a Semantic Net

Statements in XML Syntax

 Graphs are a powerful tool for human

understanding but

 The Semantic Web vision requires machine-

accessible and machine-processable

representations

 There is a 3rd representation based on XML

– But XML is not a part of the RDF data model

– E.g. serialisation of XML is irrelevant for RDF

Statements in XML (2)

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:mydomain="http://www.mydomain.org/my-rdf-ns">

 <rdf:Description

 rdf:about="http://www.cit.gu.edu.au/~db">

 <mydomain:site-owner

 rdf:resource=“#David Billington“/>

 </rdf:Description>

</rdf:RDF>

Statements in XML (3)

 An RDF document is represented by an XML

element with the tag rdf:RDF

 The content of this element is a number of

descriptions, which use rdf:Description tags.

 Every description makes a statement about a

resource, identified in 3 ways:

– an about attribute, referencing an existing resource

– an ID attribute, creating a new resource

– without a name, creating an anonymous resource

Statements in XML (4)

 The rdf:Description element makes a

statement about the resource

http://www.cit.gu.edu.au/~db

 Within the description

– the property is used as a tag

– the content is the value of the property

Reification

 In RDF it is possible to make statements
about statements
– Grigoris believes that David Billington is the

creator of http://www.cit.gu.edu.au/~db

 Such statements can be used to describe
belief or trust in other statements

 The solution is to assign a unique identifier to
each statement
– It can be used to refer to the statement

Reification (2)

 Introduce an auxiliary object (e.g. belief1)

 relate it to each of the 3 parts of the original

statement through the properties subject,

predicate and object

 In the preceding example

– subject of belief1 is David Billington

– predicate of belief1 is creator

– object of belief1 is http://www.cit.gu.edu.au/~db

Data Types

 Data types are used in programming

languages to allow interpretation

 In RDF, typed literals are used, if necessary

(#David Billington,

 http://www.mydomain.org/age,

 “27”^^http://www.w3.org/2001/XMLSchem

a#integer)

Data Types (2)

 ^^-notation indicates the type of a literal

 In practice, the most widely used data typing
scheme will be the one by XML Schema
– But the use of any externally defined data typing

scheme is allowed in RDF documents

 XML Schema predefines a large range of

data types

– E.g. Booleans, integers, floating-point numbers,

times, dates, etc.

Basic Ideas of RDF Schema

 RDF is a universal language that lets users

describe resources in their own vocabularies

– RDF does not assume, nor does it define

semantics of any particular application domain

 The user can do so in RDF Schema using:

– Classes and Properties

– Class Hierarchies and Inheritance

– Property Hierarchies

Classes and their Instances

 We must distinguish between
– Concrete “things” (individual objects) in the

domain: Discrete Maths, David Billington etc.

– Sets of individuals sharing properties called

classes: lecturers, students, courses etc.

 Individual objects that belong to a class are

referred to as instances of that class

 The relationship between instances and

classes in RDF is through rdf:type

Why Classes are Useful

 Impose restrictions on what can be stated in

an RDF document using the schema

– As in programming languages

 User.LogIn(); and not String.LogIn();

– Disallow nonsense from being stated

Nonsensical Statements disallowed
through the Use of Classes

 Discrete Maths is taught by Concrete Maths

– We want courses to be taught by lecturers only

– Restriction on values of the property “is taught by”

(range restriction)

 Room MZH5760 is taught by David Billington

– Only courses can be taught

– This imposes a restriction on the objects to which

the property can be applied (domain restriction)

Class Hierarchies

 Classes can be organised in hierarchies

– A is a subclass of B if every instance of A is also

an instance of B

– Then B is a superclass of A

 A subclass graph need not be a tree

 A class may have multiple superclasses

Class Hierarchy Example

Inheritance in Class Hierarchies

 Range restriction: Courses must be taught by

academic staff members only

 Michael Maher is a professor

 He inherits the ability to teach from the class of

academic staff members

 This is done in RDF Schema by fixing the semantics

of “is a subclass of”

– It is not up to an application (RDF processing software) to

interpret “is a subclass of”

Property Hierarchies

 Hierarchical relationships for properties

– E.g., “is taught by” is a subproperty of “involves”

– If a course C is taught by an academic staff member A, then

C also involves Α

 The converse is not necessarily true

– E.g., A may be the teacher of the course C, or

– a tutor who marks student homework but does not teach C

 P is a subproperty of Q, if Q(x,y) is true whenever

P(x,y) is true

RDF Layer vs RDF Schema Layer

 Discrete Mathematics is taught by David

Billington

 The schema is itself written in a formal

language, RDF Schema, that can express its

ingredients:

– subClassOf, Class, Property, subPropertyOf,

Resource, etc.

RDF Layer vs RDF Schema Layer (2)

Why an RDF Query Language?
Different XML Representations

 XML at a lower level of abstraction than RDF

 There are various ways of syntactically

representing an RDF statement in XML

 Thus we would require several XPath queries,

e.g.

– //uni:lecturer/uni:title if uni:title element

– //uni:lecturer/@uni:title if uni:title attribute

– Both XML representations equivalent!

SPARQL Basic Queries

 SPARQL is based on matching graph patterns

 The simplest graph pattern is the triple pattern :

- like an RDF triple, but with the possibility of a variable

instead of an RDF term in the subject, predicate, or

object positions

 Combining triple patterns gives a basic graph

pattern, where an exact match to a graph is

needed to fulfill a pattern

Examples

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?c

WHERE

{

 ?c rdf:type rdfs:Class .

}

 Retrieves all triple patterns, where:

-the property is rdf:type

-the object is rdfs:Class

 Which means that it retrieves all classes

Examples (2)

 Get all instances of a particular class (e.g. course) :

(declaration of rdf, rdfs prefixes omitted for brevity)

PREFIX uni: <http://www.mydomain.org/uni-ns#>

SELECT ?i

WHERE

{

 ?i rdf:type uni:course .

}

Using select-from-where

 As in SQL, SPARQL queries have a SELECT-FROM-WHERE
structure:

– SELECT specifies the projection: the number and order of retrieved
data

– FROM is used to specify the source being queried (optional)

– WHERE imposes constraints on possible solutions in the form of
graph pattern templates and boolean constraints

 Retrieve all phone numbers of staff members:

 SELECT ?x ?y

 WHERE

 { ?x uni:phone ?y .}

 Here ?x and ?y are variables, and ?x uni:phone ?y represents a
resource-property-value triple pattern

Implicit Join

 Retrieve all lecturers and their phone numbers:

 SELECT ?x ?y
 WHERE

 { ?x rdf:type uni:Lecturer ;

 uni:phone ?y . }

 Implicit join: We restrict the second pattern only to those triples,
the resource of which is in the variable ?x

– Here we use a syntax shorcut as well: a semicolon indicates that the
following triple shares its subject with the previous one

Implicit join (2)

 The previous query is equivalent to writing:

SELECT ?x ?y

WHERE

{

 ?x rdf:type uni:Lecturer .

 ?x uni:phone ?y .

}

Explicit Join

 Retrieve the name of all courses taught by the lecturer
with ID 949352

SELECT ?n

WHERE

{

 ?x rdf:type uni:Course ;

 uni:isTaughtBy :949352 .

 ?c uni:courseName ?n .

 FILTER (?c = ?x) .

}

Optional Patterns

<uni:lecturer rdf:about=“949352”>

 <uni:name>Grigoris Antoniou</uni:name>

</uni:lecturer>

<uni:professor rdf:about=“94318”>

 <uni:name>David Billington</uni:name>

 <uni:email>david@work.example.org</uni:email>

</uni:professor>

 For one lecturer it only lists the name

 For the other it also lists the email address

Optional Patterns (2)

 All lecturers and their email addresses:

SELECT ?name ?email

WHERE

{ ?x rdf:type uni:Lecturer ;

 uni:name ?name ;

 uni:email ?email .

}

Optional Patterns (3)

 The result of the previous query would

be:

 Grigoris Antoniou is listed as a lecturer,

but he has no e-mail address

?name ?email

David Billington david@work.example.org

Optional Patterns (4)

 As a solution we can adapt the query to use
an optional pattern:

SELECT ?name ?email

WHERE

{ ?x rdf:type uni:Lecturer ;

 uni:name ?name .

 OPTIONAL { x? uni:email ?email }

}

Optional Patterns (5)

 The meaning is roughly “give us the names

of lecturers, and if known also their e-mail

address”

 The result looks like this:

?name ?email

Grigoris Antoniou

David Billington david@work.example.org

SPARQL Tutorials and examples

 Sparqlette - A SPARQL demo query service

– http://www.wasab.dk/morten/2005/04/sparqlette/

 SPARQL Tutorial

– http://jena.sourceforge.net/ARQ/Tutorial/

 Anatomy of a simple SPARQL query

– https://www.ibm.com/developerworks/xml/library/j-

sparql/

http://www.wasab.dk/morten/2005/04/sparqlette/
http://jena.sourceforge.net/ARQ/Tutorial/
http://www.wasab.dk/morten/2005/04/sparqlette/
http://www.wasab.dk/morten/2005/04/sparqlette/
http://www.wasab.dk/morten/2005/04/sparqlette/
http://www.wasab.dk/morten/2005/04/sparqlette/

