
Describing Web Resources in
RDF

Bojan Furlan

A Semantic Web Primer,

G. Antoniou, F. van Harmelen

Drawbacks of XML

 XML is a universal metalanguage for defining

markup

 It provides a uniform framework for interchange of

data and metadata between applications

 However, XML does not provide any means of

talking about the semantics (meaning) of data

 E.g., there is no intended meaning associated with

the nesting of tags

– It is up to each application to interpret the nesting.

Nesting of Tags in XML

David Billington is a lecturer of Discrete Maths

<course name="Discrete Maths">

 <lecturer>David Billington</lecturer>

</course>

<lecturer name="David Billington">

 <teaches>Discrete Maths</teaches>

</lecturer>

Opposite nesting, same information!

Basic Ideas of RDF

 Basic building block: object-attribute-value

triple

– It is called a statement

– Sentence about Billington is such a statement

 RDF has been given a syntax in XML

– This syntax inherits the benefits of XML

– Other syntactic representations of RDF possible

Basic Ideas of RDF (2)

 The fundamental concepts of RDF are:

– resources

– properties

– statements

Resources

 We can think of a resource as an object, a
“thing” we want to talk about
– E.g. authors, books, publishers, places, people,

hotels

 Every resource has a URI, a Universal
Resource Identifier

Properties

 Properties are a special kind of resources

 They describe relations between resources

– E.g. “written by”, “age”, “title”, etc.

 Properties are also identified by URIs

 Advantages of using URIs:

– Α global, worldwide, unique naming scheme

– Reduces the homonym problem of distributed

data representation

Statements

 Statements assert the properties of

resources

 A statement is an object-attribute-value triple

– It consists of a resource, a property, and a value

 Values can be resources or literals

– Literals are atomic values (strings)

Three Views of a Statement

 A triple

 A piece of a graph

 A piece of XML code

Thus an RDF document can be viewed as:

 A set of triples

 A graph (semantic net)

 An XML document

Statements as Triples

 (http://www.cit.gu.edu.au/~db,

 http://www.mydomain.org/site-owner,

 #David Billington)

 The triple (x,P,y) can be considered as a

logical formula P(x,y)

– Binary predicate P relates object x to object y

– RDF offers only binary predicates (properties)

Statements as Directed Graph

 A directed graph with labeled nodes and arcs
– from the resource (the subject of the statement)

– to the value (the object of the statement)

 Known in AI as a semantic net

 The value of a statement may be a resource
– Ιt may be linked to other resources

A Set of Triples as a Semantic Net

Statements in XML Syntax

 Graphs are a powerful tool for human

understanding but

 The Semantic Web vision requires machine-

accessible and machine-processable

representations

 There is a 3rd representation based on XML

– But XML is not a part of the RDF data model

– E.g. serialisation of XML is irrelevant for RDF

Statements in XML (2)

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:mydomain="http://www.mydomain.org/my-rdf-ns">

 <rdf:Description

 rdf:about="http://www.cit.gu.edu.au/~db">

 <mydomain:site-owner

 rdf:resource=“#David Billington“/>

 </rdf:Description>

</rdf:RDF>

Statements in XML (3)

 An RDF document is represented by an XML

element with the tag rdf:RDF

 The content of this element is a number of

descriptions, which use rdf:Description tags.

 Every description makes a statement about a

resource, identified in 3 ways:

– an about attribute, referencing an existing resource

– an ID attribute, creating a new resource

– without a name, creating an anonymous resource

Statements in XML (4)

 The rdf:Description element makes a

statement about the resource

http://www.cit.gu.edu.au/~db

 Within the description

– the property is used as a tag

– the content is the value of the property

Reification

 In RDF it is possible to make statements
about statements
– Grigoris believes that David Billington is the

creator of http://www.cit.gu.edu.au/~db

 Such statements can be used to describe
belief or trust in other statements

 The solution is to assign a unique identifier to
each statement
– It can be used to refer to the statement

Reification (2)

 Introduce an auxiliary object (e.g. belief1)

 relate it to each of the 3 parts of the original

statement through the properties subject,

predicate and object

 In the preceding example

– subject of belief1 is David Billington

– predicate of belief1 is creator

– object of belief1 is http://www.cit.gu.edu.au/~db

Data Types

 Data types are used in programming

languages to allow interpretation

 In RDF, typed literals are used, if necessary

(#David Billington,

 http://www.mydomain.org/age,

 “27”^^http://www.w3.org/2001/XMLSchem

a#integer)

Data Types (2)

 ^^-notation indicates the type of a literal

 In practice, the most widely used data typing
scheme will be the one by XML Schema
– But the use of any externally defined data typing

scheme is allowed in RDF documents

 XML Schema predefines a large range of

data types

– E.g. Booleans, integers, floating-point numbers,

times, dates, etc.

Basic Ideas of RDF Schema

 RDF is a universal language that lets users

describe resources in their own vocabularies

– RDF does not assume, nor does it define

semantics of any particular application domain

 The user can do so in RDF Schema using:

– Classes and Properties

– Class Hierarchies and Inheritance

– Property Hierarchies

Classes and their Instances

 We must distinguish between
– Concrete “things” (individual objects) in the

domain: Discrete Maths, David Billington etc.

– Sets of individuals sharing properties called

classes: lecturers, students, courses etc.

 Individual objects that belong to a class are

referred to as instances of that class

 The relationship between instances and

classes in RDF is through rdf:type

Why Classes are Useful

 Impose restrictions on what can be stated in

an RDF document using the schema

– As in programming languages

 User.LogIn(); and not String.LogIn();

– Disallow nonsense from being stated

Nonsensical Statements disallowed
through the Use of Classes

 Discrete Maths is taught by Concrete Maths

– We want courses to be taught by lecturers only

– Restriction on values of the property “is taught by”

(range restriction)

 Room MZH5760 is taught by David Billington

– Only courses can be taught

– This imposes a restriction on the objects to which

the property can be applied (domain restriction)

Class Hierarchies

 Classes can be organised in hierarchies

– A is a subclass of B if every instance of A is also

an instance of B

– Then B is a superclass of A

 A subclass graph need not be a tree

 A class may have multiple superclasses

Class Hierarchy Example

Inheritance in Class Hierarchies

 Range restriction: Courses must be taught by

academic staff members only

 Michael Maher is a professor

 He inherits the ability to teach from the class of

academic staff members

 This is done in RDF Schema by fixing the semantics

of “is a subclass of”

– It is not up to an application (RDF processing software) to

interpret “is a subclass of”

Property Hierarchies

 Hierarchical relationships for properties

– E.g., “is taught by” is a subproperty of “involves”

– If a course C is taught by an academic staff member A, then

C also involves Α

 The converse is not necessarily true

– E.g., A may be the teacher of the course C, or

– a tutor who marks student homework but does not teach C

 P is a subproperty of Q, if Q(x,y) is true whenever

P(x,y) is true

RDF Layer vs RDF Schema Layer

 Discrete Mathematics is taught by David

Billington

 The schema is itself written in a formal

language, RDF Schema, that can express its

ingredients:

– subClassOf, Class, Property, subPropertyOf,

Resource, etc.

RDF Layer vs RDF Schema Layer (2)

Why an RDF Query Language?
Different XML Representations

 XML at a lower level of abstraction than RDF

 There are various ways of syntactically

representing an RDF statement in XML

 Thus we would require several XPath queries,

e.g.

– //uni:lecturer/uni:title if uni:title element

– //uni:lecturer/@uni:title if uni:title attribute

– Both XML representations equivalent!

SPARQL Basic Queries

 SPARQL is based on matching graph patterns

 The simplest graph pattern is the triple pattern :

- like an RDF triple, but with the possibility of a variable

instead of an RDF term in the subject, predicate, or

object positions

 Combining triple patterns gives a basic graph

pattern, where an exact match to a graph is

needed to fulfill a pattern

Examples

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?c

WHERE

{

 ?c rdf:type rdfs:Class .

}

 Retrieves all triple patterns, where:

-the property is rdf:type

-the object is rdfs:Class

 Which means that it retrieves all classes

Examples (2)

 Get all instances of a particular class (e.g. course) :

(declaration of rdf, rdfs prefixes omitted for brevity)

PREFIX uni: <http://www.mydomain.org/uni-ns#>

SELECT ?i

WHERE

{

 ?i rdf:type uni:course .

}

Using select-from-where

 As in SQL, SPARQL queries have a SELECT-FROM-WHERE
structure:

– SELECT specifies the projection: the number and order of retrieved
data

– FROM is used to specify the source being queried (optional)

– WHERE imposes constraints on possible solutions in the form of
graph pattern templates and boolean constraints

 Retrieve all phone numbers of staff members:

 SELECT ?x ?y

 WHERE

 { ?x uni:phone ?y .}

 Here ?x and ?y are variables, and ?x uni:phone ?y represents a
resource-property-value triple pattern

Implicit Join

 Retrieve all lecturers and their phone numbers:

 SELECT ?x ?y
 WHERE

 { ?x rdf:type uni:Lecturer ;

 uni:phone ?y . }

 Implicit join: We restrict the second pattern only to those triples,
the resource of which is in the variable ?x

– Here we use a syntax shorcut as well: a semicolon indicates that the
following triple shares its subject with the previous one

Implicit join (2)

 The previous query is equivalent to writing:

SELECT ?x ?y

WHERE

{

 ?x rdf:type uni:Lecturer .

 ?x uni:phone ?y .

}

Explicit Join

 Retrieve the name of all courses taught by the lecturer
with ID 949352

SELECT ?n

WHERE

{

 ?x rdf:type uni:Course ;

 uni:isTaughtBy :949352 .

 ?c uni:courseName ?n .

 FILTER (?c = ?x) .

}

Optional Patterns

<uni:lecturer rdf:about=“949352”>

 <uni:name>Grigoris Antoniou</uni:name>

</uni:lecturer>

<uni:professor rdf:about=“94318”>

 <uni:name>David Billington</uni:name>

 <uni:email>david@work.example.org</uni:email>

</uni:professor>

 For one lecturer it only lists the name

 For the other it also lists the email address

Optional Patterns (2)

 All lecturers and their email addresses:

SELECT ?name ?email

WHERE

{ ?x rdf:type uni:Lecturer ;

 uni:name ?name ;

 uni:email ?email .

}

Optional Patterns (3)

 The result of the previous query would

be:

 Grigoris Antoniou is listed as a lecturer,

but he has no e-mail address

?name ?email

David Billington david@work.example.org

Optional Patterns (4)

 As a solution we can adapt the query to use
an optional pattern:

SELECT ?name ?email

WHERE

{ ?x rdf:type uni:Lecturer ;

 uni:name ?name .

 OPTIONAL { x? uni:email ?email }

}

Optional Patterns (5)

 The meaning is roughly “give us the names

of lecturers, and if known also their e-mail

address”

 The result looks like this:

?name ?email

Grigoris Antoniou

David Billington david@work.example.org

SPARQL Tutorials and examples

 Sparqlette - A SPARQL demo query service

– http://www.wasab.dk/morten/2005/04/sparqlette/

 SPARQL Tutorial

– http://jena.sourceforge.net/ARQ/Tutorial/

 Anatomy of a simple SPARQL query

– https://www.ibm.com/developerworks/xml/library/j-

sparql/

http://www.wasab.dk/morten/2005/04/sparqlette/
http://jena.sourceforge.net/ARQ/Tutorial/
http://www.wasab.dk/morten/2005/04/sparqlette/
http://www.wasab.dk/morten/2005/04/sparqlette/
http://www.wasab.dk/morten/2005/04/sparqlette/
http://www.wasab.dk/morten/2005/04/sparqlette/

