
Structured Web Documents in
XML

Bojan Furlan

A Semantic Web Primer,

G. Antoniou, F. van Harmelen

An HTML Example

<h2>Nonmonotonic Reasoning: Context-

Dependent Reasoning</h2>

<i>by V. Marek and

M. Truszczynski</i>

Springer 1993

ISBN 0387976892

The Same Example in XML

<book>

<title>Nonmonotonic Reasoning: Context-
Dependent Reasoning</title>

<author>V. Marek</author>

<author>M. Truszczynski</author>

<publisher>Springer</publisher>

<year>1993</year>

<ISBN>0387976892</ISBN>

</book>

HTML versus XML: Similarities

 Both use tags (e.g. <h2> and </year>)

 Tags may be nested (tags within tags)

 Human users can read and interpret both

HTML and XML representations quite easily

… But how about machines?

Problems with Automated
Interpretation of HTML Documents

An intelligent agent trying to retrieve the names
of the authors of the book

 Authors’ names could appear immediately

after the title

 or immediately after the word by

 Are there two authors?

 Or just one, called “V. Marek and M.

Truszczynski”?

HTML vs XML: Structural Information

 HTML documents do not contain structural

information: pieces of the document and their

relationships.

 XML more easily accessible to machines because

– Every piece of information is described.

– Relations are also defined through the nesting structure.

– E.g., the <author> tags appear within the <book> tags, so

they describe properties of the particular book.

HTML vs XML: Structural Information (2)

 A machine processing the XML document

would be able to deduce that

– the author element refers to the enclosing book

element

– rather than by proximity considerations

 XML allows the definition of constraints on

values
– E.g. a year must be a number of four digits

HTML vs XML: Formatting

 The HTML representation provides more

than the XML representation:

– The formatting of the document is also described

 Τhe main use of an HTML document is to

display information: it must define formatting

 XML: separation of content from display

– same information can be displayed in different

ways

HTML vs XML: Another Example

 In HTML

<h2>Relationship force-mass</h2>

<i> F = M × a </i>

 In XML

<equation>

<meaning>Relationship force-mass</meaning>

<leftside> F </leftside>

<rightside> M × a </rightside>

</equation>

HTML vs XML: Different Use of Tags

 In both examples HTML uses same tags

 In XML completely different

 HTML tags define display: color, lists …

 XML tags not fixed: user definable tags

 XML meta markup language: language for
defining markup languages

XML Vocabularies

 Web applications must agree on common

vocabularies to communicate and collaborate

 Communities and business sectors are

defining their specialized vocabularies

– mathematics (MathML)

– bioinformatics (BSML)

– human resources (HRML)

– …

The XML Language

An XML document consists of

 a prolog

 a number of elements

Prolog of an XML Document

The prolog consists of

 an XML declaration and

 an optional reference to external structuring
documents

<?xml version="1.0" encoding="UTF-16"?>

<!DOCTYPE book SYSTEM "book.dtd">

XML Elements

 The “things” the XML document talks about

– E.g. books, authors, publishers

 An element consists of:

– an opening tag

– the content

– a closing tag

<lecturer>David Billington</lecturer>

XML Elements (2)

 Tag names can be chosen almost freely.

 The first character must be a letter, an

underscore, or a colon

 No name may begin with the string “xml” in

any combination of cases

– E.g. “Xml”, “xML”

Content of XML Elements

 Content may be text, or other elements, or nothing

<lecturer>

<name>David Billington</name>

<phone> +61 − 7 − 3875 507 </phone>

</lecturer>

 If there is no content, then the element is called
empty; it is abbreviated as follows:

<lecturer/> for <lecturer></lecturer>

XML Attributes

 An empty element is not necessarily

meaningless

– It may have some properties in terms of attributes

 An attribute is a name-value pair inside the

opening tag of an element

<lecturer name="David Billington"

phone="+61 − 7 − 3875 507"/>

XML Attributes: An Example

<order orderNo="23456" customer="John Smith"

date="October 15, 2002">

<item itemNo="a528" quantity="1"/>

<item itemNo="c817" quantity="3"/>

</order>

The Same Example without Attributes

<order>

<orderNo>23456</orderNo>

<customer>John Smith</customer>

<date>October 15, 2002</date>

<item>

<itemNo>a528</itemNo>

<quantity>1</quantity>

</item>

<item>

<itemNo>c817</itemNo>

<quantity>3</quantity>

</item>

</order>

XML Elements vs Attributes

 Attributes can be replaced by elements

 When to use elements and when attributes is

a matter of taste

 But attributes cannot be nested

Further Components of XML Docs

 Comments

– A piece of text that is to be ignored by parser

– <!-- This is a comment -->

Well-Formed XML Documents

 Syntactically correct documents

 Some syntactic rules:
– Only one outermost element (called root element)

– Each element contains an opening and a
corresponding closing tag

– Tags may not overlap
 <author><name>Lee Hong</author></name>

– Attributes within an element have unique names

The Tree Model of XML Documents:
An Example

<email>

<head>

<from name="Michael Maher"

address="michaelmaher@cs.gu.edu.au"/>

<to name="Grigoris Antoniou"

address="grigoris@cs.unibremen.de"/>

<subject>Where is your draft?</subject>

</head>

<body>

Grigoris, where is the draft of the paper you promised me

last week?

</body>

</email>

The Tree Model of XML Documents:
An Example (2)

XML Schema

 Define XML Structure: DTD or XML Schema

 Significantly richer language for defining the
structure of XML documents

 Its syntax is based on XML itself
– not necessary to write separate tools

 Reuse and refinement of schemas
– Expand or delete already existent schemas

 Sophisticated set of data types, compared to
DTDs (which only supports strings)

XML Schema (2)

 An XML schema is an element with an

opening tag like

<schema

"http://www.w3.org/2000/10/XMLSchema"

version="1.0">

 Structure of schema elements

– Element and attribute types using data types

Element Types

<element name="email"/>

<element name="head" minOccurs="1"
maxOccurs="1"/>

<element name="to" minOccurs="1"/>

Cardinality constraints:

 minOccurs="x" (default value 1)

 maxOccurs="x" (default value 1)

Attribute Types

<attribute name="id" type="ID“
use="required"/>

< attribute name="speaks" type="Language"

use="default" value="en"/>

 Existence: use="x", where x may be
optional or required

 Default value: use="x" value="...", where x
may be default or fixed

Data Types

 There is a variety of built-in data types

– Numerical data types: integer, Short etc.

– String types: string, ID, etc.

– Date and time data types: time, Month etc.

 There are also user-defined data types

– simple data types, which cannot use elements or

attributes

– complex data types, which can use these

Data Types (2)

 Complex data types are defined from already
existing data types by defining some
attributes (if any) and using:

– sequence, a sequence of existing data type
elements (order is important)

– all, a collection of elements that must appear
(order is not important)

– choice, a collection of elements, of which one will
be chosen

XML Schema: The Email Example

<element name="email" type="emailType"/>

<complexType name="emailType">

<sequence>

<element name="head" type="headType"/>

<element name="body" type="bodyType"/>

</sequence>

</complexType>

XML Schema: The Email Example (2)

<complexType name="headType">

<sequence>

<element name="from" type="nameAddress"/>

<element name="to" type="nameAddress"

minOccurs="1" maxOccurs="unbounded"/>

<element name="cc" type="nameAddress"

minOccurs="0" maxOccurs="unbounded"/>

<element name="subject" type="string"/>

</sequence>

</complexType>

XML Schema: The Email Example (3)

<complexType name="nameAddress">

<attribute name="name" type="string"

use="optional"/>

<attribute name="address"

type="string" use="required"/>

</complexType>

 Similar for bodyType

Namespaces

 An XML document may use more than one

DTD or schema

 Since each structuring document was

developed independently, name clashes may

appear

 The solution is to use a different prefix for

each DTD or schema

– prefix:name

Addressing and Querying XML
Documents

 In relational databases, parts of a database
can be selected and retrieved using SQL
– Same necessary for XML documents

– Query languages: XQuery, XQL, XML-QL

 The central concept of XML query languages
is a path expression
– Specifies how a node or a set of nodes, in the

tree representation of the XML document can be
reached

XPath

 XPath is core for XML query languages

 Language for addressing parts of an XML

document.

– It operates on the tree data model of XML

– It has a non-XML syntax

Types of Path Expressions

 Absolute (starting at the root of the tree)

– Syntactically they begin with the symbol /

– It refers to the root of the document (situated one

level above the root element of the document)

 Relative to a context node

An XML Example

<library location="Bremen">

<author name="Henry Wise">

<book title="Artificial Intelligence"/>

<book title="Modern Web Services"/>

<book title="Theory of Computation"/>

</author>

<author name="William Smart">

<book title="Artificial Intelligence"/>

</author>

<author name="Cynthia Singleton">

<book title="The Semantic Web"/>

<book title="Browser Technology Revised"/>

</author>

</library>

Tree Representation

Examples of Path Expressions in
XPath

 Address all author elements

/library/author

 Addresses all author elements that are

children of the library element node, which

resides immediately below the root

 /t1/.../tn, where each ti+1 is a child node of

ti, is a path through the tree representation

Examples of Path Expressions in
XPath (2)

 Address all author elements

//author

 Here // says that we should consider all

elements in the document and check

whether they are of type author

 This path expression addresses all author

elements anywhere in the document

Examples of Path Expressions in
XPath (3)

 Address the location attribute nodes within

library element nodes

/library/@location

 The symbol @ is used to denote attribute

nodes

Examples of Path Expressions in
XPath (4)

 Address all title attribute nodes within book

elements anywhere in the document, which

have the value “Artificial Intelligence”

//book/@title="Artificial Intelligence"

Examples of Path Expressions in
XPath (5)

 Address all books with title “Artificial Intelligence”

//book[@title="Artificial Intelligence"]

 Test within square brackets: a filter expression

– It restricts the set of addressed nodes.

 Difference with query 4.

– Query 5 addresses book elements, the title of which

satisfies a certain condition.

– Query 4 collects title attribute nodes of book elements

Tree Representation of Query 4

Tree Representation of Query 5

Examples of Path Expressions in
XPath (6)

 Address the first author element node in the XML
document

//author[1]

 Address the last book element within the first
author element node in the document

//author[1]/book[last()]

 Address all book element nodes without a title
attribute

//book[not @title]

General Form of Path Expressions

 A path expression consists of a series of

steps, separated by slashes

 A step consists of

– An axis specifier,

– A node test, and

– An optional predicate

General Form of Path Expressions (2)

 An axis specifier determines the tree

relationship between the nodes to be

addressed and the context node

– // is such an axis specifier: descendant or self

General Form of Path Expressions (3)

 A node test specifies which nodes to

address

– The most common node tests are element names

– E.g., * addresses all element nodes

– comment() addresses all comment nodes

General Form of Path Expressions (4)

 Predicates (or filter expressions) are

optional and are used to refine the set of

addressed nodes

– E.g., the expression [1] selects the first node

– [position()=last()] selects the last node

– [position() mod 2 =0] selects the even nodes

 XPath has a more complicated full syntax.

– Here is only presented the abbreviated syntax

