
Structured Web Documents in
XML

Bojan Furlan

A Semantic Web Primer,

G. Antoniou, F. van Harmelen

An HTML Example

<h2>Nonmonotonic Reasoning: Context-

Dependent Reasoning</h2>

<i>by V. Marek and

M. Truszczynski</i>

Springer 1993

ISBN 0387976892

The Same Example in XML

<book>

<title>Nonmonotonic Reasoning: Context-
Dependent Reasoning</title>

<author>V. Marek</author>

<author>M. Truszczynski</author>

<publisher>Springer</publisher>

<year>1993</year>

<ISBN>0387976892</ISBN>

</book>

HTML versus XML: Similarities

 Both use tags (e.g. <h2> and </year>)

 Tags may be nested (tags within tags)

 Human users can read and interpret both

HTML and XML representations quite easily

… But how about machines?

Problems with Automated
Interpretation of HTML Documents

An intelligent agent trying to retrieve the names
of the authors of the book

 Authors’ names could appear immediately

after the title

 or immediately after the word by

 Are there two authors?

 Or just one, called “V. Marek and M.

Truszczynski”?

HTML vs XML: Structural Information

 HTML documents do not contain structural

information: pieces of the document and their

relationships.

 XML more easily accessible to machines because

– Every piece of information is described.

– Relations are also defined through the nesting structure.

– E.g., the <author> tags appear within the <book> tags, so

they describe properties of the particular book.

HTML vs XML: Structural Information (2)

 A machine processing the XML document

would be able to deduce that

– the author element refers to the enclosing book

element

– rather than by proximity considerations

 XML allows the definition of constraints on

values
– E.g. a year must be a number of four digits

HTML vs XML: Formatting

 The HTML representation provides more

than the XML representation:

– The formatting of the document is also described

 Τhe main use of an HTML document is to

display information: it must define formatting

 XML: separation of content from display

– same information can be displayed in different

ways

HTML vs XML: Another Example

 In HTML

<h2>Relationship force-mass</h2>

<i> F = M × a </i>

 In XML

<equation>

<meaning>Relationship force-mass</meaning>

<leftside> F </leftside>

<rightside> M × a </rightside>

</equation>

HTML vs XML: Different Use of Tags

 In both examples HTML uses same tags

 In XML completely different

 HTML tags define display: color, lists …

 XML tags not fixed: user definable tags

 XML meta markup language: language for
defining markup languages

XML Vocabularies

 Web applications must agree on common

vocabularies to communicate and collaborate

 Communities and business sectors are

defining their specialized vocabularies

– mathematics (MathML)

– bioinformatics (BSML)

– human resources (HRML)

– …

The XML Language

An XML document consists of

 a prolog

 a number of elements

Prolog of an XML Document

The prolog consists of

 an XML declaration and

 an optional reference to external structuring
documents

<?xml version="1.0" encoding="UTF-16"?>

<!DOCTYPE book SYSTEM "book.dtd">

XML Elements

 The “things” the XML document talks about

– E.g. books, authors, publishers

 An element consists of:

– an opening tag

– the content

– a closing tag

<lecturer>David Billington</lecturer>

XML Elements (2)

 Tag names can be chosen almost freely.

 The first character must be a letter, an

underscore, or a colon

 No name may begin with the string “xml” in

any combination of cases

– E.g. “Xml”, “xML”

Content of XML Elements

 Content may be text, or other elements, or nothing

<lecturer>

<name>David Billington</name>

<phone> +61 − 7 − 3875 507 </phone>

</lecturer>

 If there is no content, then the element is called
empty; it is abbreviated as follows:

<lecturer/> for <lecturer></lecturer>

XML Attributes

 An empty element is not necessarily

meaningless

– It may have some properties in terms of attributes

 An attribute is a name-value pair inside the

opening tag of an element

<lecturer name="David Billington"

phone="+61 − 7 − 3875 507"/>

XML Attributes: An Example

<order orderNo="23456" customer="John Smith"

date="October 15, 2002">

<item itemNo="a528" quantity="1"/>

<item itemNo="c817" quantity="3"/>

</order>

The Same Example without Attributes

<order>

<orderNo>23456</orderNo>

<customer>John Smith</customer>

<date>October 15, 2002</date>

<item>

<itemNo>a528</itemNo>

<quantity>1</quantity>

</item>

<item>

<itemNo>c817</itemNo>

<quantity>3</quantity>

</item>

</order>

XML Elements vs Attributes

 Attributes can be replaced by elements

 When to use elements and when attributes is

a matter of taste

 But attributes cannot be nested

Further Components of XML Docs

 Comments

– A piece of text that is to be ignored by parser

– <!-- This is a comment -->

Well-Formed XML Documents

 Syntactically correct documents

 Some syntactic rules:
– Only one outermost element (called root element)

– Each element contains an opening and a
corresponding closing tag

– Tags may not overlap
 <author><name>Lee Hong</author></name>

– Attributes within an element have unique names

The Tree Model of XML Documents:
An Example

<email>

<head>

<from name="Michael Maher"

address="michaelmaher@cs.gu.edu.au"/>

<to name="Grigoris Antoniou"

address="grigoris@cs.unibremen.de"/>

<subject>Where is your draft?</subject>

</head>

<body>

Grigoris, where is the draft of the paper you promised me

last week?

</body>

</email>

The Tree Model of XML Documents:
An Example (2)

XML Schema

 Define XML Structure: DTD or XML Schema

 Significantly richer language for defining the
structure of XML documents

 Its syntax is based on XML itself
– not necessary to write separate tools

 Reuse and refinement of schemas
– Expand or delete already existent schemas

 Sophisticated set of data types, compared to
DTDs (which only supports strings)

XML Schema (2)

 An XML schema is an element with an

opening tag like

<schema

"http://www.w3.org/2000/10/XMLSchema"

version="1.0">

 Structure of schema elements

– Element and attribute types using data types

Element Types

<element name="email"/>

<element name="head" minOccurs="1"
maxOccurs="1"/>

<element name="to" minOccurs="1"/>

Cardinality constraints:

 minOccurs="x" (default value 1)

 maxOccurs="x" (default value 1)

Attribute Types

<attribute name="id" type="ID“
use="required"/>

< attribute name="speaks" type="Language"

use="default" value="en"/>

 Existence: use="x", where x may be
optional or required

 Default value: use="x" value="...", where x
may be default or fixed

Data Types

 There is a variety of built-in data types

– Numerical data types: integer, Short etc.

– String types: string, ID, etc.

– Date and time data types: time, Month etc.

 There are also user-defined data types

– simple data types, which cannot use elements or

attributes

– complex data types, which can use these

Data Types (2)

 Complex data types are defined from already
existing data types by defining some
attributes (if any) and using:

– sequence, a sequence of existing data type
elements (order is important)

– all, a collection of elements that must appear
(order is not important)

– choice, a collection of elements, of which one will
be chosen

XML Schema: The Email Example

<element name="email" type="emailType"/>

<complexType name="emailType">

<sequence>

<element name="head" type="headType"/>

<element name="body" type="bodyType"/>

</sequence>

</complexType>

XML Schema: The Email Example (2)

<complexType name="headType">

<sequence>

<element name="from" type="nameAddress"/>

<element name="to" type="nameAddress"

minOccurs="1" maxOccurs="unbounded"/>

<element name="cc" type="nameAddress"

minOccurs="0" maxOccurs="unbounded"/>

<element name="subject" type="string"/>

</sequence>

</complexType>

XML Schema: The Email Example (3)

<complexType name="nameAddress">

<attribute name="name" type="string"

use="optional"/>

<attribute name="address"

type="string" use="required"/>

</complexType>

 Similar for bodyType

Namespaces

 An XML document may use more than one

DTD or schema

 Since each structuring document was

developed independently, name clashes may

appear

 The solution is to use a different prefix for

each DTD or schema

– prefix:name

Addressing and Querying XML
Documents

 In relational databases, parts of a database
can be selected and retrieved using SQL
– Same necessary for XML documents

– Query languages: XQuery, XQL, XML-QL

 The central concept of XML query languages
is a path expression
– Specifies how a node or a set of nodes, in the

tree representation of the XML document can be
reached

XPath

 XPath is core for XML query languages

 Language for addressing parts of an XML

document.

– It operates on the tree data model of XML

– It has a non-XML syntax

Types of Path Expressions

 Absolute (starting at the root of the tree)

– Syntactically they begin with the symbol /

– It refers to the root of the document (situated one

level above the root element of the document)

 Relative to a context node

An XML Example

<library location="Bremen">

<author name="Henry Wise">

<book title="Artificial Intelligence"/>

<book title="Modern Web Services"/>

<book title="Theory of Computation"/>

</author>

<author name="William Smart">

<book title="Artificial Intelligence"/>

</author>

<author name="Cynthia Singleton">

<book title="The Semantic Web"/>

<book title="Browser Technology Revised"/>

</author>

</library>

Tree Representation

Examples of Path Expressions in
XPath

 Address all author elements

/library/author

 Addresses all author elements that are

children of the library element node, which

resides immediately below the root

 /t1/.../tn, where each ti+1 is a child node of

ti, is a path through the tree representation

Examples of Path Expressions in
XPath (2)

 Address all author elements

//author

 Here // says that we should consider all

elements in the document and check

whether they are of type author

 This path expression addresses all author

elements anywhere in the document

Examples of Path Expressions in
XPath (3)

 Address the location attribute nodes within

library element nodes

/library/@location

 The symbol @ is used to denote attribute

nodes

Examples of Path Expressions in
XPath (4)

 Address all title attribute nodes within book

elements anywhere in the document, which

have the value “Artificial Intelligence”

//book/@title="Artificial Intelligence"

Examples of Path Expressions in
XPath (5)

 Address all books with title “Artificial Intelligence”

//book[@title="Artificial Intelligence"]

 Test within square brackets: a filter expression

– It restricts the set of addressed nodes.

 Difference with query 4.

– Query 5 addresses book elements, the title of which

satisfies a certain condition.

– Query 4 collects title attribute nodes of book elements

Tree Representation of Query 4

Tree Representation of Query 5

Examples of Path Expressions in
XPath (6)

 Address the first author element node in the XML
document

//author[1]

 Address the last book element within the first
author element node in the document

//author[1]/book[last()]

 Address all book element nodes without a title
attribute

//book[not @title]

General Form of Path Expressions

 A path expression consists of a series of

steps, separated by slashes

 A step consists of

– An axis specifier,

– A node test, and

– An optional predicate

General Form of Path Expressions (2)

 An axis specifier determines the tree

relationship between the nodes to be

addressed and the context node

– // is such an axis specifier: descendant or self

General Form of Path Expressions (3)

 A node test specifies which nodes to

address

– The most common node tests are element names

– E.g., * addresses all element nodes

– comment() addresses all comment nodes

General Form of Path Expressions (4)

 Predicates (or filter expressions) are

optional and are used to refine the set of

addressed nodes

– E.g., the expression [1] selects the first node

– [position()=last()] selects the last node

– [position() mod 2 =0] selects the even nodes

 XPath has a more complicated full syntax.

– Here is only presented the abbreviated syntax

