Structured Web Documents In
XML

Bojan Furlan

An HTML Example
-

<h2>Nonmonotonic Reasoning: Context-
Dependent Reasoning</h2>
<i>by V. Marek and
M. Truszczynski</i>

Springer 1993

ISBN 0387976892

The Same Example in XML
-

<book>

<titte>Nonmonotonic Reasoning: Context-
Dependent Reasoning</title>

<author>V. Marek</author>

<author>M. Truszczynski</author>

<publisher>Springer</publisher>

<year>1993</year>

<ISBN>0387976892</ISBN>
</book>

HTML versus XML: Similarities
N

e Both use (e.g. <h2> and </year>)
e Tags may be nested (tags within tags)

e Human users can read and interpret both
HTML and XML representations quite easily

Problems with Automated
Interpretation of HTML Documents

An intelligent agent trying to retrieve the names
of the authors of the book

e Authors’ names could appear immediately
after the title

e or immediately after the word by
e Are there two authors?

e Or just one, called V. Marek and M.
Truszczynski®™?

HTML vs XML: Structural Information
« 1

e HTML documents do not contain
. pieces of the document and their
relationships.

e XML more easily accessible to machines because
— Every piece of information is described.
- Relations are also defined through the nesting structure.

- E.g., the <author> tags appear within the <book> tags, so
they describe properties of the particular book.

HTML vs XML: Structural Information (2)
S

e A machine processing the XML document
would be able to deduce that

— the author element refers to the enclosing book
element

— rather than by proximity considerations

e XML allows the definition of constraints on

values
- E.g. ayear must be a number of four digits

HTML vs XML: Formatting
—

e The HTML representation provides more
than the XML representation:

- The formatting of the document is also described

e The main use of an HTML document is to
display information: it must define formatting

- same information can be displayed in different
ways

HTML vs XML: Another Example
-

<h2>Relationship force-mass</h2>
<>F=Mxac</i>

<equation>
<meaning>Relationship force-mass</meaning>
<leftside> F </leftside>
<rightside> M x a </rightside>

</equation>

HTML vs XML: Different Use of Tags
o000 |

e In both examples HTML uses same tags
e In XML completely different

e HTML tags define display: color, lists ...
e XML tags not fixed:

e XML . language for
defining markup languages

XML Vocabularies
G

e \Web applications must agree on common
vocabularies to communicate and collaborate

e Communities and business sectors are
defining their specialized vocabularies
- mathematics (MathML)
— bioinformatics (BSML)
— human resources (HRML)

The XML Language
-

An XML document consists of
® a
e a humber of

Prolog of an XML Document
c--

The prolog consists of
e an XML declaration and

e an optional reference to external structuring
documents

<?xml version="1.0" encoding="UTF-16"?>

<IDOCTYPE book SYSTEM "book.dtd">

XML Elements
N

e The "things” the XML document talks about
- E.g. books, authors, publishers
e An element consists of:
— an opening tag
- the content
— aclosing tag
<lecturer>David Billington</lecturer>

XML Elements (2)
-

e Tag names can be chosen almost freely.

e The first character must be a letter, an
underscore, or a colon

e No name may begin with the string “xml” in
any combination of cases

- E.g. “Xml”, *xML”

Content of XML Elements
N

e Content may be text, or other elements, or nothing

<lecturer>
<name>David Billington</name>
<phone> +61 =7 — 3875 507 </phone>
</lecturer>

e |f there Is no content, then the element is called
empty; it is abbreviated as follows:

<lecturer/> for <lecturer></lecturer>

XML Attributes
N

e An empty element is not necessarily
meaningless
— It may have some properties in terms of attributes

e An attribute is a name-value pair inside the
opening tag of an element

<lecturer name="David Billington"
phone="+61 -7 — 3875 507"/>

XML Attributes: An Example
c--

<order orderNo="23456" customer="John Smith"
date="October 15, 2002">
<item itemNo="a528" quantity="1"/>
<item itemNo="c817" quantity="3"/>
</order>

The Same Example without Attributes
c]

<order>
<orderNo>23456</orderNo>
<customer>John Smith</customer>
<date>October 15, 2002</date>
<item>
<itemNo>a528</itemNo>
<quantity>1</quantity>
</item>
<item>
<itemNo>c817</itemNo>
<guantity>3</quantity>
</item>
</order>

XML Elements vs Attributes
N

e Attributes can be replaced by elements

e \When to use elements and when attributes iIs
a matter of taste

e But attributes cannot be nested

Further Components of XML Docs
-

- A piece of text that is to be ignored by parser
- <!--Thisis acomment -->

Well-Formed XML Documents
G

e Syntactically correct documents

e Some syntactic rules:
- Only one outermost element (called

- Each element contains an opening and a
corresponding closing tag

- Tags may not overlap
e <author><name>Lee Hong</author></name>

— Attributes within an element have unique names

The Tree Model of XML Documents:
An Example

<email>
<head>
<from name="Michael Maher"
address="michaelmaher@cs.gu.edu.au"/>
<to name="Grigoris Antoniou"
address="grigoris@cs.unibremen.de"/>
<subject>Where is your draft?</subject>
</head>
<body>
Grigoris, where is the draft of the paper you promised me
last week?
</body>
</email>

The Tree Model of XML Documents:
An Example (2)

Croe)

Hichaal michaalnabard Grigoris grigorisé Whara 18 Fromisad me

Hahar CH. Qo . edn . am Antonlon ca umibroman, d your draft) last waalk ¥

XML Schema
N

e Define XML Structure: DTD or XML Schema

e Significantly richer language for defining the
structure of XML documents

e |ts syntax is based on XML itself
— nhot necessary to write separate tools
e Reuse and refinement of schemas
- Expand or delete already existent schemas

e Sophisticated set of data types, compared to
DTDs (which only supports strings)

XML Schema (2)
-

e An XML schema is an element with an
opening tag like

<schema
"http:/lwww.w3.0rg/2000/10/XMLSchema"

version="1.0">

e Structure of schema elements
- Element and attribute types using data types

Element Types
-

<element name="email" />

<element name="head" minOccurs="1"
maxOccurs="1"/>

<element name="to" minOccurs="1"/>
Cardinality constraints:
e minOccurs="x" (default value 1)
e maxOccurs="x" (default value 1)

Attribute Types
c--

<attribute name="id" type="ID*
use="required"/>

< attribute name="speaks" type="Language"
use="default" value="en"/>

e Existence: use="x", where x may be
optional or required

e Default value: use="x" value="...", where x
may be default or fixed

Data Types
S

e There is a variety of
- Numerical data types: integer, Short etc.
- String types: string, ID, etc.
- Date and time data types: time, Month etc.
e There are also

- . which cannot use elements or
attributes

_ - which can use these

Data Types (2)
c--

o are defined from already
existing data types by defining some
attributes (if any) and using:

- sequence, a sequence of existing data type
elements (order is important)

- all, a collection of elements that must appear
(order is not important)

— choice, a collection of elements, of which one will
be chosen

XML Schema: The Email Example
-

<element name="email" type="emailType"/>

<complexType name="emailType">
<sequence>
<element name="head" type="headType"/>
<element name="body" type="bodyType"/>
</sequence>
</complexType>

XML Schema: The Email Example (2)
c]

<complexType name="headType">
<sequence>
<element name="from" type="nameAddress"/>
<element name="to" type="nameAddress"
minOccurs="1" maxOccurs="unbounded"/>
<element name="cc" type="nameAddress"
minOccurs="0" maxOccurs="unbounded"/>
<element name="subject" type="string"/>
</sequence>
</complexType>

XML Schema: The Email Example (3)
o000 |

<complexType name="nameAddress">

<attribute name="name" type="string"
use="optional"/>

<attribute name="address"
type="string" use="required"/>
</complexType>

e Similar for bodyType

Namespaces
S

e An XML document may use more than one
DTD or schema

e Since each structuring document was
developed independently, name clashes may
appear

e The solution is to use a different prefix for
each DTD or schema

— prefix:name

Addressing and Querying XML
Documents

e In relational databases, parts of a database
can be selected and retrieved using SQL
- Same necessary for XML documents
— : XQuery, XQL, XML-QL

e The central concept of XML query languages
IS a
- Specifies how a node or a set of nodes, in the

tree representation of the XML document can be
reached

XPath
/7

e XPath is core for XML query languages
e Language for addressing parts of an XML
document.

— It operates on the tree data model of XML
— It has a non-XML syntax

Types of Path Expressions
o]

e Absolute (starting at the root of the tree)
- Syntactically they begin with the symbol /

— It refers to the root of the document (situated one
level above the root element of the document)

e Relative to a context node

An XML Example
-

<library location="Bremen">
<author name="Henry Wise">
<book title="Artificial Intelligence"/>
<book title="Modern Web Services"/>
<book title="Theory of Computation"/>
</author>
<author name="William Smart">
<book title="Artificial Intelligence"/>
</author>
<author name="Cynthia Singleton">
<book title="The Semantic Web" />
<book title="Browser Technology Revised"/>
</author>
</library>

Tree Representation

il

.......
b

)

Examples of Path Expressions in
XPath

/library/author

e Addresses all author elements that are
children of the library element node, which
resides immediately below the root

e /t1/.../tn, where each ti+1 Is a child node of
ti, Is a path through the tree representation

Examples of Path Expressions in
XPath (2)

®
[lauthor

e Here // says that we should consider all
elements in the document and check
whether they are of type author

e This path expression addresses all author
elements anywhere in the document

Examples of Path Expressions in
XPath (3)

/[library/@Ilocation

e The symbol @ is used to denote attribute
nodes

Examples of Path Expressions in
XPath (4)

[lbook/@title="Artificial Intelligence"”

Examples of Path Expressions in
XPath (5)

[lbook|[@title="Artificial Intelligence"]

e Test within square brackets: a
— ltrestricts the set of addressed nodes.

e Difference with query 4.

-~ Query 5 addresses book elements, the title of which
satisfies a certain condition.

-~ Query 4 collects title attribute nodes of book elements

Tree Representation of Query 4

Tree Representation of Query 5

S
<

FOECED

Examples of Path Expressions in
XPath (6)

/lauthor[1]

[lauthor[1]/book[last()]

//book[not @title]

General Form of Path Expressions
-

o A consists of a series of
steps, separated by slashes
o A consists of

- An axis specifier,
- Anode test, and
- An optional predicate

General Form of Path Expressions (2)
o]

e An axis specifier determines the tree
relationship between the nodes to be
addressed and the context node

- /l'is such an axis specifier: descendant or self

General Form of Path Expressions (3)
S

e A node test specifies which nodes to

address

- The most common node tests are element names
- E.g., * addresses all element nodes
- comment() addresses all comment nodes

General Form of Path Expressions (4)

e Predicates (or filter expressions) are
optional and are used to refine the set of
addressed nodes

- E.g., the expression [1] selects the first node

- [position()=last()] selects the last node

— [position() mod 2 =0] selects the even nodes
e XPath has a more complicated full syntax.

- Here is only presented the abbreviated syntax

