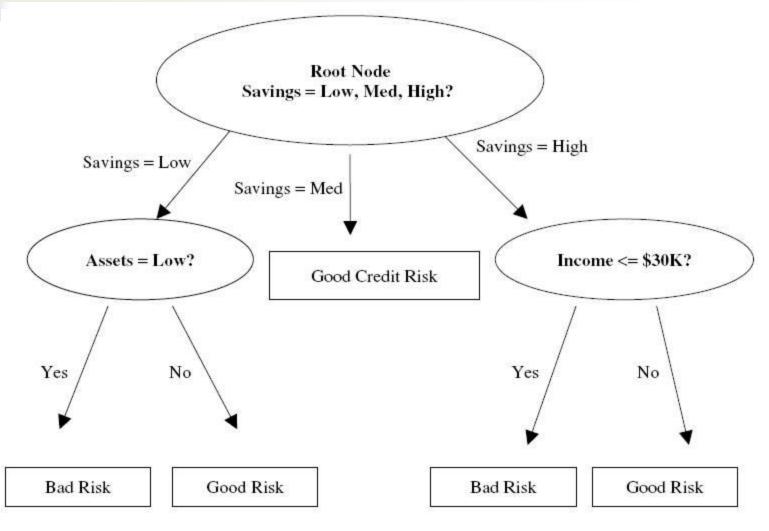


Pronalaženje skrivenog znanja Bojan Furlan

DECISION TREES - Goal



DECISION TREES - Requirements

Creating Decision Trees

- Manual Based on expert knowledge
- <u>Automated</u> Based on training data (DM)
- Requirements so decision tree algorithms may be applied:
 - 1. A training data set must be supplied which provides the algorithm with the values of the target variable. (supervised learning)
 - 2. Training data set should be rich and varied
 - 3. The target attribute classes must be discrete (or discretized)

DECISION TREES - Properties

Issue #1: Which attribute to take for a split?

- Decision trees seek to create a set of leaf nodes that are as "pure" as possible
 - each of the records in a leaf node has the same classification.
- This provide classification with the highest measure of confidence!
- E.g. in the example above, the decision tree choose the savings attribute for the root node split. Why?
 - Because it partitions the training data set as "pure" as possible!

DECISION TREES - Properties

Issue #2: When to stop splitting?

- When there is no need for another decision node
 - I. All of the records have been classified within same class.
 - II. All splits are exhausted.
- E.g. Why a leaf node and not another decision node for Savings=Med?
 - Because, all of the records with medium savings levels have been classified as good credit risks.
 - => if customer has medium savings predict good credit with 100% accuracy in the data set.
- Two algorithms for constructing decision trees:
 - Classification and regression trees (CART) algorithm
 - C4.5 algorithm

- CART trees are binary, containing exactly two branches for each decision node.
- CART recursively partitions the records into subsets with same values for the target attribute.

number of records at t

 Let Φ(s |t) be a measure of the "goodness" of a candidate split s at node t, where:

$$\Phi(s|t) = 2P_L P_R \sum_{j=1}^{\# \text{ classes}} |P(j|t_L) - P(j|t_R)| \qquad P_L \equiv \frac{\text{number of records at } t_L}{\text{number of records in training set}}$$

$$t_L = \text{left child node of node } t \qquad P_R = \frac{\text{number of records at } t_R}{\text{number of records in training set}}$$

$$t_R = \text{right child node of node } t \qquad P(j|t_L) = \frac{\text{number of class } j \text{ records at } t_L}{\text{number of records at } t}$$

$$P(j|t_R) = \frac{\text{number of class } j \text{ records at } t_R}{\text{number of records at } t}$$

 Then the optimal split maximizes this Φ(s |t) measure over all possible splits at node t.

- $\Phi(s | t)$ is large when both of its main components are large: $2P_L P_R$ and $\sum_{j=1}^{\# \text{ classes}} |P(j|t_L) - P(j|t_R)|$
- 1. $2P_LP_R$ Maximum value if child nodes are equal size (same support): E.g. 0.5*0.5 = 0.25 and 0.9*0.1 = 0.09

2. Q (s |t) =
$$\sum_{j=1}^{\# \text{ classes}} |P(j|t_L) - P(j|t_R)|$$

- Maximum value if for each class the child nodes are completely uniform (pure).
- Theoretical maximum value for Q (s|t) is k, where k is the number of classes for the target variable.

CART Example

[Customer	Savings	Assets	Income (\$1000s)	Credit Risk
1	Medium	High	75	Good
2	Low	Low	50	Bad
3	High	Medium	25	Bad
4	Medium	Medium	50	Good
5	Low	Medium	100	Good
6	High	High	25	Good
7	Low	Low	25	Bad
8	Medium	Medium	75	Good

Training Set of Records for Classifying Credit Risk

CART Example – Candidate Splits

Candidate Split	Left Child Node, t_L	Right Child Node, t_R
1	Savings = low	Savings \in {medium, high}
2	Savings = medium	Savings $\in \{low, high\}$
3	Savings = high	Savings $\in \{low, medium\}$
4	Assets = low	Assets \in {medium, high}
5	Assets = medium	Assets $\in \{low, high\}$
6	Assets = high	Assets $\in \{low, medium\}$
7	Income \leq \$25,000	<i>Income</i> > \$25,000
8	Income \leq \$50,000	<i>Income</i> > \$50,000
9	Income \leq \$75,000	<i>Income</i> > \$75,000

Candidate Splits for t = Root Node

CART is restricted to binary splits

CART Primer

Split 1. -> Savings=low (L-true, R-false)

- Right:1,3,4,6,8
- Left:2,5,7

• $P_R = 5/8 = 0.625 P_L = 3/8 = 0.375 -> 2*P_L P_R = 15/64 = 0.46875$

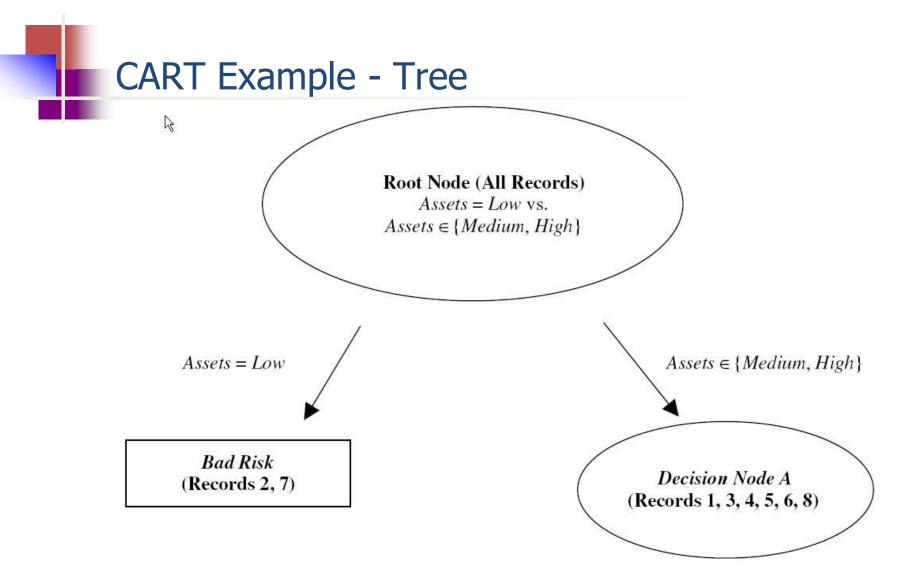
- za j(klasu) = Bad
 - P(Bad|t_R)= 1/5=0.2
 - P(Bad|t_L)= 2/3=0.67
- za j(klasu) = Good
 - $P(Good|t_R) = 4/5 = 0.8$
 - $P(Good|t_L) = 1/3 = 0.33$
- Q(s|t) = |0.67 0.2| + |0.8 0.33| = 0.934

CART Example

Split	P_L	P_R	$P(j t_L)$	$P(j t_R)$	$2P_LP_R$	Q(s t)	$\Phi(s t)$
1	0.375	0.625	G: .333	G: .8	0.46875	0.934	0.4378
			B: .667	B: .2			
2	0.375	0.625	G: 1	G: 0.4	0.46875	1.2	0.5625
			B: 0	B: 0.6			
3	0.25	0.75	G: 0.5	G: 0.667	0.375	0.334	0.1253
			B: 0.5	B: 0.333			
4	0.25	0.75	G: 0	G: 0.833	0.375	1.667	0.6248
			B: 1	B: 0.167			
5	0.5	0.5	G: 0.75	G: 0.5	0.5	0.5	0.25
			B: 0.25	B: 0.5			
6	0.25	0.75	G: 1	G: 0.5	0.375	1	0.375
			B: 0	B: 0.5			
7	0.375	0.625	G: 0.333	G: 0.8	0.46875	0.934	0.4378
			B: 0.667	B: 0.2			
8	0.625	0.375	G: 0.4	G: 1	0.46875	1.2	0.5625
			B: 0.6	B : 0			
9	0.875	0.125	G: 0.571	G: 1	0.21875	0.858	0.1877
			B: 0.429	B: 0			

Values of Components of Optimality Measure $\Phi(s | t)$ for Each Candidate Split, for the Root Node

 For each candidate split, examine the values of the various components of the measure Φ(s |t).



CART decision tree after initial split

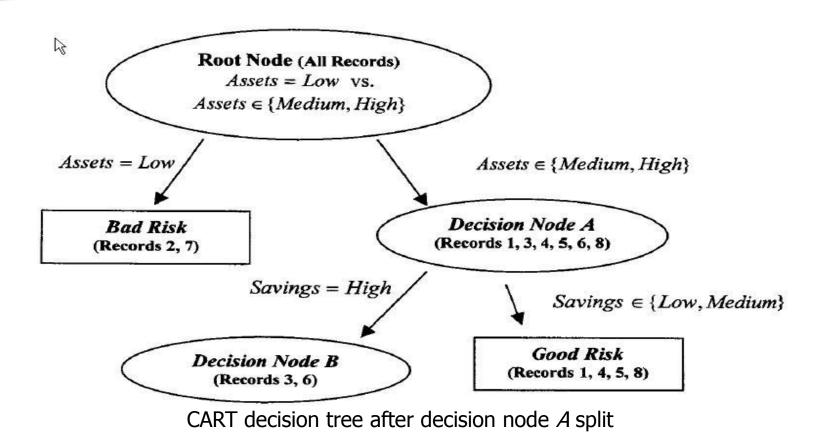
CART Example

Split	P_L	P_R	$P(j t_L)$	$P(j t_R)$	$2P_LP_R$	Q(s t)	$\Phi(s t)$
1	0.167	0.833	G: 1	G: .8	0.2782	0.4	0.1112
			B: 0	B: .2			
2	0.5	0.5	G: 1	G: 0.667	0.5	0.6666	0.3333
			B: 0	B: 0.333			
3	0.333	0.667	G: 0.5	G: 1	0.4444	1	0.4444
			B: 0.5	B: 0			
5	0.667	0.333	G: 0.75	G: 1	0.4444	0.5	0.2222
			B: 0.25	B: 0			
6	0.333	0.667	G: 1	G: 0.75	0.4444	0.5	0.2222
			B: 0	B: 0.25			
7	0.333	0.667	G: 0.5	G: 1	0.4444	1	0.4444
			B: 0.5	B: 0			
8	0.5	0.5	G: 0.667	G: 1	0.5	0.6666	0.3333
			B: 0.333	B: 0			
9	0.167	0.833	G: 0.8	G: 1	0.2782	0.4	0.1112
			B: 0.2	B: 0			

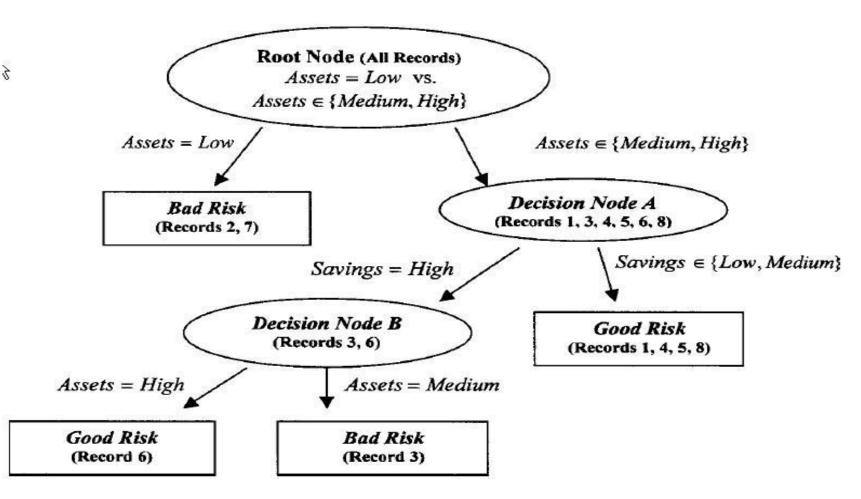
Values of Components of Optimality Measure $\Phi(s|t)$ for Each Candidate Split, for Decision Node A

• Two candidate splits (3 and 7) share the highest value for $\Phi(s|t)$,0.4444.

CART Example - Tree



CART Example - Tree



CART decision tree, fully grown form

- Eventually, no decision nodes remain, and the "full tree" has been grown.
- Fully grown tree has the lowest error rate, but can result in <u>overfitting</u>.
- Pruning the tree will increase the generalizability of results.

DECISION TREES - purity

 Not all leaf nodes are homogeneous, which leads to a certain level of classification error.

Customer	Savings	Assets	Income	Credit Risk
004	High	Low	≤\$30,000	Good
009	High	Low	≤\$30,000	Good
027	High	Low	≤\$30,000	Bad
031	High	Low	≤\$30,000	Bad
104	High	Low	≤\$30,000	Bad

Sample of Records That Cannot Lead to Pure Leaf Node

- When no further splits can be made, the decision tree algorithm stops growing new nodes.
- Decision tree may report that the classification for such customers is "bad," with 60% confidence

Differences between CART and C4.5:

- Unlike CART, the C4.5 algorithm is not restricted to binary splits.
 - It produces a separate branch for each value of the categorical attribute.
- C4.5 method for measuring node homogeneity is different from the CART.

C4.5 ALGORITHM - Measure

- We have a candidate split S, which partitions the training data set T into several subsets, T₁, T₂, . . . , T_k.
- C4.5 uses the concept of *entropy reduction* to select the optimal split.
- entropy_reduction(S) = $H(T)-H_S(T)$, where entropy H(X) is:

$$H(X) = -\sum_{j} p_{j} \log_{2}(p_{j})$$

- The weighted sum of the entropies for the individual subsets T_1, T_2, \ldots, T_k $H_S(T) = \sum_{i=1}^k P_i H_S(T_i)$
- Where P_i represents the proportion of records in subset i.
- C4.5 chooses the optimal split the split with greatest entropy reduction

Lustomer	Savings	Assets	Income (\$1000s)	Credit Risk
1	Medium	High	75	Good
2	Low	Low	50	Bad
3	High	Medium	25	Bad
4	Medium	Medium	50	Good
5	Low	Medium	100	Good
6	High	High	25	Good
7	Low	Low	25	Bad
8	Medium	Medium	75	Good

Training Set of Records for Classifying Credit Risk

Candidate Split		Child Nodes	
1	Savings = low	Savings = medium	Savings = high
2	Assets = low	Assets = medium	Assets = high
3	Income \leq \$25,000		<i>Income</i> > \$25,000
4	Income \leq \$50,000		<i>Income</i> > \$50,000
5	Income \leq \$75,000		<i>Income</i> > \$75,000

Candidate Splits at Root Node for C4.5 Algorithm

 5/8 records are classified as good credit risk and 3/8 are classified as bad credit risk the entropy before splitting is:

$${}^{\!\!\!\!}^{\!\!\!\!}H(T) = -\sum_{j} p_{j} \log_{2}(p_{j}) = -\frac{5}{8} \log_{2}\left(\frac{5}{8}\right) - \frac{3}{8} \log_{2}\left(\frac{3}{8}\right) = 0.9544$$

 Compare the entropy of each candidate split against this H(T)=0.9544, to see which split results in the greatest reduction in entropy.

- For candidate split 1 (savings): P_{high} = ²/₈, P_{medium} = ³/₈, P_{low} = ³/₈.
 Entropy for <u>high</u> savings is -¹/₂ log₂ (¹/₂) - ¹/₂ log₂ (¹/₂) = 1
- Entropy for <u>medium</u> is

$$\frac{1}{3} \log_2\left(\frac{3}{3}\right) - \frac{0}{3} \log_2\left(\frac{0}{3}\right) = 0$$

Entropy for <u>low</u> savings is

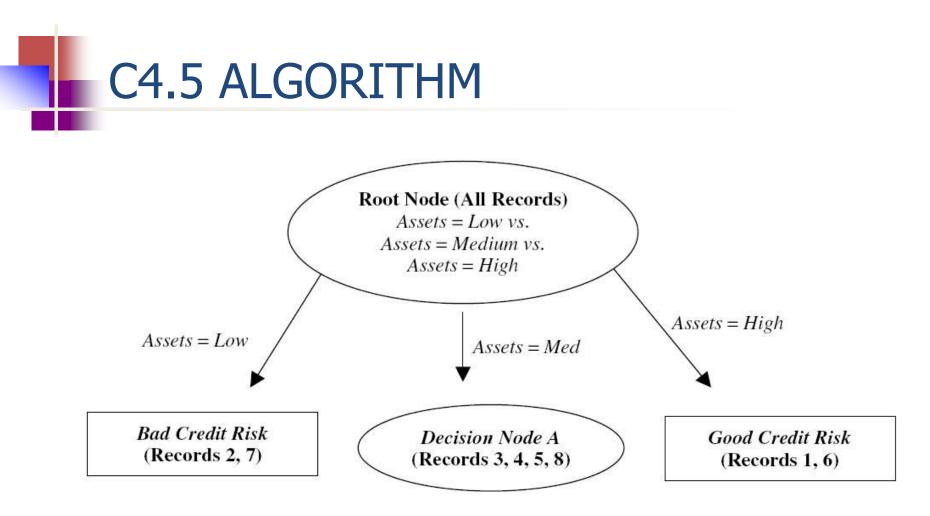
$$-\frac{1}{3}\log_2\left(\frac{1}{3}\right) - \frac{2}{3}\log_2\left(\frac{2}{3}\right) = 0.9183$$

- We combine the entropies of these three and the proportions of the subsets Pi: $H_{\text{savings}}(T) = \frac{2}{8}(1) + \frac{3}{8}(0) + \frac{3}{8}(0.9183) = 0.5944$
- Then the information gain represented by the split on the savings attribute is calculated as

 $H(T) - H_{\text{savings}}(T) = 0.9544 - 0.5944 = 0.36$

Candidate Split	Child Nodes	Information Gain (Entropy Reduction)
1	Savings = low Savings = medium Savings = high	0.36 bits
2	Assets = low $Assets = medium$ $Assets = high$	0.5487 bits
3	$Income \le \$25,000$ $Income > \$25,000$	0.1588 bits
4	$Income \le \$50,000$ $Income > \$50,000$	0.3475 bits
5	$Income \le \$75,000$ $Income > \$75,000$	0.0923 bits

Information Gain for Each Candidate Split at the Root Node



Partial decision tree resulting from C4.5's initial split

	Income					
Customer	Savings	Assets	(\$1000s)	Credit Risk		
3	High	Medium	25	Bad		
4	Medium	Medium	50	Good		
5	Low	Medium	100	Good		
8	Medium	Medium	75	Good		

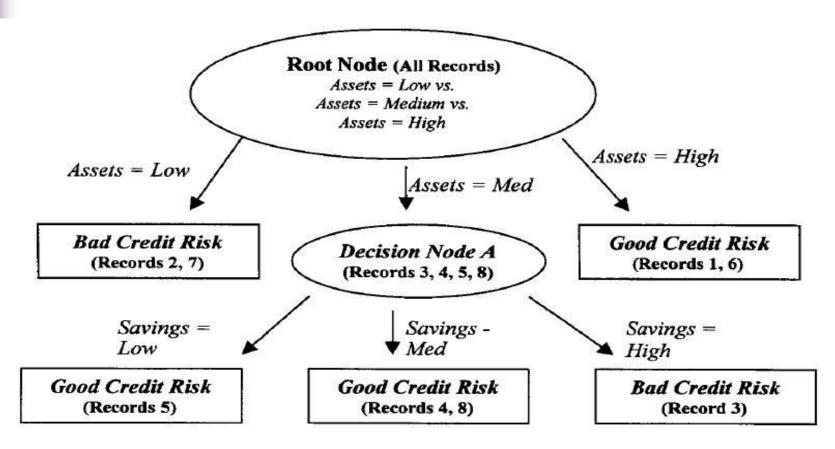
Records Available at Decision Node A for Classifying Credit Risk

the entropy before splitting is

$$H(A) = -\sum_{j} p_{j} \log_{2}(p_{j}) = -\frac{3}{4} \log_{2}\left(\frac{3}{4}\right) - \frac{1}{4} \log_{2}\left(\frac{1}{4}\right) = 0.8113$$

Candidate Split		Child Nodes	
1	Savings = low	Savings = medium	Savings = high
3	$Income \leq $25,000$		Income > \$25,000
4	$Income \leq $50,000$		Income > \$50,000
5	Income \leq \$75,000		<i>Income</i> > \$75,000

Candidate Splits at Decision Node A



C4.5 Decision tree: fully grown form

DECISION RULES

Antecedent	Consequent	Support	Confidence
If $assets = low$	then bad credit risk.	$\frac{2}{8}$	1.00
If $assets = high$	then good credit risk.	$\frac{2}{8}$	1.00
If $assets = medium$ and $savings = low$	then good credit risk.	$\frac{1}{8}$	1.00
If assets = medium and savings = medium	then good credit risk.	$\frac{2}{8}$	1.00
If $assets = medium$ and $savings = high$	then bad credit risk.	$\frac{1}{8}$	1.00

Decision Rules Generated from Decision Last Tree

Tutorial

SQL Server Data mining tutorial

 Basic Data Mining Tutorial <u>http://technet.microsoft.com/en-</u> <u>us/library/ms167167.aspx</u> (Lessons 1-6)