ll DECISION TREES

Pronalazenje skrivenog znanja
Bojan Furlan

I_I_. DECISION TREES - Goal

Root Node
Savings = Low, Med, High?

Savings = High
Savings = Low

Savings = Med

Income <= $30K?
Good Credit Risk

Yes No Yes No \

Bad Risk Good Risk Bad Risk Good Risk

ML DECISION TREES - Requirements

Creating Decision Trees
= Manual - Based on expert knowledge
= Automated - Based on training data (DM)

= Requirements so decision tree algorithms may be applied:

= 1. Atraining data set must be supplied which provides the algorithm
with the values of the target variable. (supervised learning)

= 2. Training data set should be rich and varied

= 3. The target attribute classes must be discrete (or discretized)

ML DECISION TREES - Properties

= Issue #1: Which attribute to take for a split?

= Decision trees seek to create a set of leaf nodes
that are as “pure” as possible
= each of the records in a leaf node has the same classification.

= This provide classification with the highest
measure of confidence!

= E.g. in the example above, the decision tree choose
the savings attribute for the root node split. Why?
= Because it partitions the training data set as “pure” as possible!

8L DECISION TREES - Properties

B
= Issue #2:. When to stop splitting?
= When there is no need for another decision node

. All of the records have been classified within same class.
o All splits are exhausted.

»« E.g. Why a leaf node and not another decision node for
Savings=Med?

= Because, all of the records with medium savings levels
have been classified as good credit risks.

=> if customer has medium savings - predict good credit
with 100% accuracy in the data set.

= Two algorithms for constructing decision trees:

= Classification and regression trees (CART) algorithm
= C4.5 algorithm

!L CLASSIFICATION AND REGRESSION TREES
—C

= CART trees are binary, containing exactly two
branches for each decision node.

s CART recursively partitions the records
into subsets with same values
for the target attribute.

!L CLASSIFICATION AND REGRESSION TREES
ming

= Let (s |t) be a measure of the “goodness”
of a candidate split s at node t, where:

number of records at 77

classes P e

i . . L = PR S—— YT Se—
®(s|t) = 2P, Pr Z |P(jlt) — P(jltr)l number of records in training set
J=1 number of records at 7p
ey 2 Pr = ‘ . —
t;, = lett child node of node ¢ number of records in training set
tg = right child node of node 7 . number of class j records at 7
P(jlt) = : _
number of records at ¢
, number of class 7 records at g
P(jltr) =

number of records at ¢

= Then the optimal split maximizes this ®(s |t) measure
over all possible splits at node t .

!L CLASSIFICATION AND REGRESSION TREES
C

= O(s [t) is large when both of its main components are large:
2P P and)5S P(jleL) — P(jltr)

1. 2P, Pr - Maximum value if child nodes are equal size
(same support): E.g. 0.5%0.5 = 0.25 and 0.9%0.1= 0.09

2. Q(s [t)= DS PGl — P(jltg)l

= Maximum value if for each class the child nodes
are completely uniform (pure).

= Theoretical maximum value for Q (s|t) is k,
where k is the number of classes for the target variable.

L CART Example
e

Income

C us&)mcr Savings Assets ($1000s) Credit Risk
I Medium High 75 Good

2 Low Low 50 Bad

3 High Medium 25 Bad

4 Medium Medium 50 Good

5 Low Medium 100 Good

6 High High 25 Good

7 Low Low 25 Bad

8 Medium Medium 75 Good

Training Set of Records for Classifying Credit Risk

L CART Example — Candidate Splits
i

Candidate Split Left Child Node, 7, Right Child Node, 7g

1 Savings = low Savings € {medium, high}
2 Savings = medium Savings € {low, high}

3 Savings = high Savings € {low, medium }
4 Assets = low Assets € {medium, high}
5 Assets = medium Assets € {low, high}

6 Assets = high Assets € {low, medium }

7 Income < $25.000 Income = $25,000

o0

Income < $50.000
Income < $75.000

O

Income = $50.,000
Income = $75.000

Candidate Splits for t = Root Node

s CART is restricted to binary splits

ML CART Primer

= Split 1. -> Savings=Ilow (L-true, R-false)
= Right:1,3,4,6,8
« Left:2,5,7

= P=5/8 = 0.625 P,=3/8=0.375 -> 2*P,P,=15/64=0.46875

= za j(klasu) = Bad
= P(Bad|ty)= 1/5=0.2
= P(Bad|t)= 2/3=0.67
= za j(klasu) = Good
= P(Good|tz)=4/5=10.8
« P(Good|t)=1/3 =0.33
= Q(s|t)=]0.67-0.2]+|0.8-0.33| = 0.934

CART Example

gplll P(jltr) P(jltr) 2P; Pgr QO(s|r) D(s|7)

1 0.375 0.625 G: .333 G: .8 0.46875 0.934 0.4378
B: .667 B: .2

2 0.375 0.625 Gi: 1 G: 0.4 0.46875 1.2 0.5625
B: O B: 0.6

3 0.25 0.75 G: 0.5 G: 0.667 0.375 0.334 0.1253
B: 0.5 B: 0.333

4 0.25 0.75 G: O G: 0.833 0.375 1.667 0.6248
B: 1 B: 0.167

) 0.5 0.5 G: 0.75 G: 0.5 0.5 0.5 0.25
B: 0.25 B: 0.5

6 0.25 0.75 G: 1 G 0:5 0.375 1 0.375
B: O B: 0.5

7 0.375 0.625 G: 0.333 G: O.8 0.46875 0.934 0.4378
B: 0.667 B: 0.2

8 0.625 0.375 G: 0.4 G: 1 0.46875 1.2 0.5625
B: 0.6 B: O

9 0.875 0.125 G: 0.571 G 1 021875 0.858 O.1877
B: 0.429 B: O

Values of Components of Optimality Measure ®(s |t) for Each Candidate Split, for the Root Node

= For each candidate split, examine the values
of the various components of the measure O(s |t).

!L CART Example - Tree
N

%
Root Node (All Records)
Assets = Low vs.
Assets € {Medium, High}
Assets = Low Assets € {Medium, High }
Bad Risk
(Records 2, 7) Decision Node A
(Records 1, 3,4, 5,6, 8)

CART decision tree after initial split

CART Example

.|.-

Split Pr Pgr P(jltr) P(jltg) 2P; Pg Q(s|t) D(s|1)

| 0.167 0.833 G | G: .8 0.2782 0.4 O.1112
B: 0 B: .2

2 0.5 0.5 G: | G: 0.667 0.5 0.6666 0.3333
B: O B: 0.333

3 0.333 0.667 G: 0.5 Ge: 1 0.4444 | 0.4444
B: 0.5 B: 0

5 0.667 0.333 G: 0.75 Ge: 1 0.4444 0.5 0.2222
B: 0.25 B: 0

6 0.333 0.667 G: | G: 0.75 0.4444 0.5 0.2222
B: 0 B: 0.25

7 0.333 0.667 G: 0.5 G: 1 0.4444 | 0.4444
B: 0.5 B: O

8 0.5 0.5 G: 0.667 G: | 0.5 0.6666 0.3333
B: 0.333 B: 0O

9 0.167 0.833 G: 0.8 G: 1 0.2782 04 01112
B: 0.2 B: 0

Values of Components of Optimality Measure ®(s|t) for Each Candidate Split, for Decision Node A

« Two candidate splits (3 and 7) share the highest value for ®(s|t),0.4444.

CART Example - Tree

Root Node (All Records)
Assets = Low vs.

Assets € { Medium, High}

Assets = Lo/ \ Assets € { Medium, High}

Bad Risk Decision Node A
(Records 2, 7) (Records 1, 3, 4, 5, 6, 8)

Savings = High
& z‘g/ \ Savings € { Low, Medium}
e Good Risk

CART decision tree after decision node A split

CART Example - Tree

Root Node (All Records)
3 Assets = Low vs.

Assets € { Medium, High}

Assets = Loy Assets € {Medium, High}

Bad Risk Decision Node A
(Records 2, 7) (Records 1, 3, 4. 5, 6, 8)
Savings = Hzg:z/ \Savings e {Low, Medium}
Decision Node B Good Risk
(Reconds2::8) (Records 1, 4, 5, 8)

Assets = High / l Assets = Medium

Good Risk Bad Risk
(Record 6) (Record 3)

CART decision tree, fully grown form

!L CLASSIFICATION AND REGRESSION TREES
1

= Eventually, no decision nodes remain,
and the “full tree” has been grown.

= Fully grown tree has the lowest error rate,
but can result in overfitting.

= Pruning the tree will increase the
generalizability of results.

!L DECISION TREES - purity
HE

= Not all leaf nodes are homogeneous,
which leads to a certain level of classification error.

Customer Savings Assets Income Credit Risk
004 High Low <$30,000 Good
009 High LLow <$30.000 Good
027 High Low <$30,000 Bad

031 High Low <$30,000 Bad

104 High Low <$30,000 Bad

L

Sample of Records That Cannot Lead to Pure Leaf Node

= When no further splits can be made,
the decision tree algorithm stops growing new nodes.

= Decision tree may report that the classification for such customers
is “bad,” with 60% confidence

8L 4.5 ALGORITHM
HE
» Differences between CART and C4.5:

= Unlike CART, the C4.5 algorithm is not restricted
to binary splits.

= It produces a separate branch for each value
of the categorical attribute.

» C4.5 method for measuring node homogeneity
is different from the CART.

8L 4.5 ALGORITHM - Measure
|

We have a candidate split S, which partitions the training
data set T into several subsets, T,, T,, . . ., T,.

C4.5 uses the concept of entropy reduction
to select the optimal split.

entropy_reduction(S) = H(T)—H<(T), where entropy H(X) is:

H(X)=—Y p;log,(p))
J

The weighted sum of the entropies for the individual subsets
T, Ty ..., T

k
Hs(T) = Y PiHs(T;)
=1

Where P; represents the proportion of records in subset i .

C4.5 chooses the optimal split - the split with greatest
entropy reduction

L C4.5 ALGORITHM
HE

Income

C‘usl%mcr Savings Assets ($1000s) Credit Risk
1 Medium High 75 Good

2 Low Low 50 Bad

3 High Medium 25 Bad

4 Medium Medium 50 Good

5 Low Medium 100 Good

6 High High 25 Good

7 Low Low 25 Bad

8 Medium Medium 75 Good

Training Set of Records for Classifying Credit Risk

Clundidalc Split

Child Nodes

(]

th =

Savings = low

Assets = low

Savings = medium

Assets = medium

Income < $25,000
Income < $50,000
Income < $75.000

Savings = high

Assets = high
Income > $25.000
Income > $50,000
Income = $75.000

Candidate Splits at Root Node for C4.5 Algorithm

8L 4.5 ALGORITHM
HE

= 5/8 records are classified as good credit risk
and 3/8 are classified as bad credit risk

the entropy before splitting is:

(

H(T) = — Z pilog,(p;) = —2log, (2) — 2 log, () = 0.9544
J

= Compare the entropy of each candidate split against
this H(T)=0.9544, to see which split results in the
greatest reduction in entropy.

8L C4.5 ALGORITHM
HE

= For cagdldate spI|t31 (savmgs):

IDhigh= 81 Pmedium™= g/ Piow= &
= Entropy for high savings is
—2log, (3) — 3 log, (5) =1
2 £2 2 2 £2 2) —
= Entropy for medium is

L : 0 0
—3log, (3) — 3log, (3) =0
= Entropy for low savings is

—21log, (3) — 3log, (%) = 0.9183

Mk C4.5 ALGORITHM

= We combine the entropies of these three
and the proportions of the subsets Pi:

Haings(T) = 3(1) + 3(0) + £(0.9183) = 0.5944

= Then the information gain re||3resented by the split
on the savings attribute is calculated as

H(T) — Heines(T) = 0.9544 — 0.5944 = 0.36

L C4.5 ALGORITHM
-- Information Gain

Candidate Split Child Nodes (Entropy Reduction)

1 Savings = low 0.36 bits
Savings = medium

Savings = high

2

Assets = low 0.5487 bits
Assets = medium

Assets = high

3 Income < $25.000 0.1588 bits
Income = $25.000

4 Income < $50.000 0.3475 bits
Income = $50,000
5 Income < $75.000 0.0923 bits

Income = $75.000

Information Gain for Each Candidate Split at the Root Node

L C4.5 ALGORITHM
HE

Root Node (All Records)
Assets = Low vs.
Assets = Medium vs.
Assets = High

Assets = High

Assets = Low Assets = Med

Bad Credit Risk
(Records 2, 7)

Good Credit Risk
(Records 1, 6)

Decision Node A
(Records 3. 4, 5, 8)

Partial decision tree resulting from C4.5’s initial split

ML 4.5 ALGORITHM
HE

Income
Customer Savings Assets ($1000s) Credit Risk
3 High Medium 25 Bad
4 Medium Medium 50 Good
R Low Medium 100 Good
8 Medium Medium 75 Good

Records Available at Decision Node A for Classifying Credit Risk

= the entropy before splitting is

)

H(A) = — Z/)j log,(p;) = —7 log, (?1') — %logz(

J

) = 0.8113

|

ML 4.5 ALGORITHM
HE

Candidate Split Child Nodes

l Savings = low Savings = medium Savings = high
3 Income < $25,000 Income > $25,000

4 Income < $50,000 Income > $50,000

5 Income < $75,000 Income > $75,000

Candidate Splits at Decision Node A

C4.5 ALGORITHM

Root Node (All Records)
Assets = Low vs.
Assets = Medium vs.
Assets = High

Assets = High
Assets = Low

lAssets = Med

Bad Credit Risk . . Good Credit Risk
Decision Node A
(Records 2, 7) (Records 3, 4, 5, 8) (Records 1, 6)
Savings = / Savings - \ Savings =
Low Med High
Good Credit Risk Good Credit Risk Bad Credit Risk
(Records 5) (Records 4, 8) (Record 3)

C4.5 Decision tree: fully grown form

L DECISION RULES
HE

Antecedent Consequent Support Confidence
If assets = low then bad credit risk. % 1.00
If assets = high then good credit risk. % 1.00
If assets = medium and savings = low then good credit risk. % 1.00
If assets = medium and savings = medium then good credit risk. é 1.00
If assets = medium and savings = high then bad credit risk. % 1.00

Decision Rules Generated from Decision Last Tree

!L Tutorial

HE
= SQL Server Data mining tutorial

= Basic Data Mining Tutorial
http://technet.microsoft.com/en-
us/library/ms167167.aspx (Lessons 1-6)

http://technet.microsoft.com/en-us/library/ms167167.aspx
http://technet.microsoft.com/en-us/library/ms167167.aspx
http://technet.microsoft.com/en-us/library/ms167167.aspx

