DATA PREPROCESSING

Pronalaženje skrivenog znanja Bojan Furlan

WHY DO WE NEED TO PREPROCESS THE DATA?

- Raw data contained in databases is unpreprocessed, incomplete, and noisy.
- For example, the databases may contain:
 - Missing values
 - Outliers
 - Data in a form not suitable for data mining models
 - Fields that are redundant
 - Values not consistent with policy or common sense.
- Database preprocessing: data cleaning and data transformation.
- Objective: minimize the "garbage" that gets into model,
 ⇒ minimize the amount of garbage that models give out. (GIGO)
- Data preparation takes 60% of the data mining process.

DATA CLEANING

Customer ID	Zip	Gender	Income	Age	Marital Status	Transaction Amount
1001	10048	М	75000	С	М	5000
1002	J2S7K7	F	-40000	40	W	4000
1003	90210		1000000	45	S	7000
1004	6269	М	50000	0	S	1000
1005	55101	F	99999	30	D	3000

- Customer 1002 has strange (to American eyes) zip code of J2S7K7.
 - Classify this unusual value as an error and toss it out will be wrong.
 - This is the zip code of St. Hyancinthe, Quebec, Canada, real data from a real customer.
 - Ready to expect unusual values in fields such as zip codes, which vary from country to country.
- Customer 1004 has zip code 6269. Zip codes for the New England states begin with the numeral 0.
 - Zip code field is defined to be numeric and not character (text), the software will probably chop off the leading zero
- Gender contains a missing value for customer 1003.
- customer 1003 is having an income of \$10,000,000 per year.
 - possible when considering the customer's zip code (90210, Beverly Hills), this value of income is outlier, an extreme data value.
- 1004 reported income is negative of -\$40,000 that must be an error.

DATA CLEANING

- Age field has problems. 1001 "age" of C probably reflects an earlier categorization.
 - The data mining software will definitely not like this categorical value in an otherwise numerical field.
- 1004 age of 0?
 - Perhaps there is a newborn male who has made a transaction of \$1000.
 - The age of this person is probably missing and was coded as 0 to indicate this or some other anomalous condition.
- It is better to keep date-type fields (such as birthdate) then age fields, since these are constant and may be transformed into ages.
- The marital status field. The problem lies in the meaning behind these symbols.
 - Does the S for customers 1003 and 1004 stand for single or separated?

HANDLING MISSING DATA

- A common method of handling missing values: omit that data!
- Dangerous! The pattern of missing values may in fact be systematic:
 - May lead to a biased subset of the data.
 - waste to omit the information in all the other fields, because one field is missing.
- Choice of replacement values for missing data:
 - constant
 - mean (for numerical variables) or mode (for categorical variables)
 - mode most frequent appearing value in a data set
 - value generated at random from the variable distribution.

HANDLING MISSING DATA (EXAMPLE)

 Cars data set consists of gas mileage, number of cylinders, cubic inches, horsepower.

	mpg	cylinders	cubicinches	hp
	continuous	categorical	continuous	continuous
1	14.0	8	350.0	165.0
2	31.9	4	89.0	71.0
3	517.0	8	302.0	140.0
4	15.0		400.0	150.0
5	30.5			
6	23.0		350.0	125.0
7	13.0		351.0	158.0
8	14.0	8		215.0
9	25.4	5		77.0
10	37.7	4	89.0	62.0

Some of our field values are missing!

for the numerical - constant 0.00 for the categorical - label *Missing*.

	mpg	cylinders	cubicinches	hp
	continuous	categorical	continuous	continuous
1	14.00	8	350.00	165.00
2	31.90	4	89.00	71.00
3	517.00	8	302.00	140.00
4	15.00	Missing	400.00	150.00
5	30.50	Missing	0.00	0.00
6	23.00	Missing	350.00	125.00
7	13.00	Missing	351.00	158.00
8	14.00	8	0.00	215.00
9	25.40	5	0.00	77.00
1.0	37.70	4	89.00	62.00

HANDLING MISSING DATA (EXAMPLE)

	mpg	cylinders	cubicinches	hp
-!	continuous	categorical	continuous	continuous
11	14.00	8	350.00	165.00
2	31.90	4	89.00	71.00
3	517.00	8	302.00	140.00
4	15.00	8	400.00	150.00
5	30.50	4	144.15	116.55
6	23.00	4	350.00	125.00
7	13.00	6	351.00	158.00
8	14.00	8	323.45	215.00
9	25.40	5	81.84	77.00
10	37.70	4	89.00	62.00

	mpg	cylinders	cubicinches	hp
	continuous	categorical	continuous	continuous
1	14.00	8	350.00	165.00
2	31.90	4	89.00	71.00
3	517.00	8	302.00	140.00
4	15.00	4	400.00	150.00
5	30.50	4	200.65	106.53
6	23.00	4	350.00	125.00
7	13.00	4	351.00	158.00
8	14.00	8	200.65	215.00
9	25.40	5	200.65	77.00
10	37.70	4	89.00	62.00

- The same value (right) mean and mode
- Various values (left) drawn proportionally random from the distribution of attribute values.
 - distribution should remain closer to the original.

HANDLING MISSING DATA

- BUT for both cases there is no guarantee that the resulting records would make sense.
 - E.G. Some record could have drawn: cylinders = 8 with cubicinches = 82, a strange engine! (1 cubic inches = 16.387064 cubic centimeters)
- Replacing missing values is a gamble: weight benefits against the possible invalidity of the results

IDENTIFYING MISCLASSIFICATIONS

Level Name	Count
USA	1
France	1
US	156
Europe	46
Japan	51

select origin, count(origin)

from ...

group by origin

- The frequency distribution shows five classes: USA, France, US, Europe, and Japan.
- Two of the records have been classified inconsistently: USA ⇒ US, France ⇒ Europe.

DATA TRANSFORMATION

- Variables tend to have ranges that vary greatly from each other. E.g.— age and incomes
- For some data mining algorithms differences in the ranges will lead to a tendency for the variable with greater range to have bigger influence on the results.
- ⇒ normalize numerical variables: standardize the scale of each variable

Min-Max Normalization

how much greater the field value is than the minimum value min(X) and scale this difference by the range:

$$X^* = \frac{X - \min(X)}{\operatorname{range}(X)} = \frac{X - \min(X)}{\max(X) - \min(X)}$$

Min-Max Normalization

Count:	261
Missing:	0
Max:	25.0
Min:	8.0
Mean:	15.548
Std dev:	2.911

- Time-to-60 variable from the cars data set: measures how long (in seconds) each automobile takes to reach 60 miles per hour.
- Minmax normalization for three automobiles having times-to-60: 8, 15.548, and 25 seconds:
- Vehicle which takes only 8 seconds (the field minimum) $X^* = \frac{X - \min(X)}{\max(X) - \min(X)} = \frac{8 - 8}{25 - 8} = 0$
- Vehicle (if any), which takes exactly 15.548 seconds (the variable average): ${}^{\aleph}_{X^*} = \frac{X \min(X)}{\max(X) \min(X)} = \frac{15.548 8}{25 8} = 0.444$
- Vehicle which takes 25 seconds (the variable maximum) $X^* = \frac{X \min(X)}{\max(X) \min(X)} = \frac{25 8}{25 8} = 1.0$

Z-Score Standardization

Count:	261
Missing:	0
Max	3.247
Min:	-2.593
Mean:	0.0
Std dev:	1.0

3.7

 Z-score standardization: take the difference between the field value and the field mean value and scale this difference by the standard deviation of the field values.

$$X^* = \frac{X - \text{mean}(X)}{\text{SD}(X)} \qquad \sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^2},$$
$${}^{\aleph}_{X^*} = \frac{X - \text{mean}(X)}{\text{SD}(X)} = \frac{15.548 - 15.548}{2.911} = 0$$
$$X^* = \frac{X - \text{mean}(X)}{\text{SD}(X)} = \frac{8 - 15.548}{2.911} = -2.593 \qquad \overset{\aleph}{X^*} = \frac{X - \text{mean}(X)}{\text{SD}(X)} = \frac{25 - 15.548}{2.911} = 3.247$$

 Z-score standardization values will usually range between -4 and 4, with the mean value having a Z-score standardization of zero.

- Outliers are extreme values that lie near the limits of the data range or go against the trend of the remaining data.
- May represent errors or a valid data points.
- Even if it is a valid data point and not error, it may corrupt data analysis:
 - certain statistical methods are sensitive to the presence of outliers and may deliver unstable results.

How to deal: graphical or numerical methods

GRAPHICAL METHODS FOR IDENTIFYING OUTLIERS

ount	261
ssing:	0
ах:	4997.0
in:	192.5
ean:	2998.852
d dev:	867.701

St

- Histogram generated of the vehicle weights from the cars data set.
- 192.5 pounds is a little light for an automobile (1 pound = 0.45359237 kilograms)
- Perhaps the weight was originally 1925 pounds, with the decimal inserted somewhere along the line.

GRAPHICAL METHODS FOR IDENTIFYING OUTLIERS

- Two-dimensional scatter plots: for outliers in more than one variable.
- (left down) the same vehicle as that identified in histogram weighing only 192.5 pounds.
- (upper right corner) a car that gets over 500 miles per gallon!

OUTLIERS: Min-Max Normalization

Min-max normalization values range is [0,1]

- unless new data values lie outside the original range.
- Outliers in the original data set will make that most of the values lie near extreme (0 or 1)
 - e.g. Car with times-to-60= 200s makes other values be normalized near 0.
- Problem Min-max normalization depends on range.

OUTLIERS: Z-score standardization

- An outlier can be identified because it is has a value that is: less than -3 or greater than 3
- PROBLEM: if outliers are in the original data set
 - the mean and standard deviation, both part of the formula for the *Z*-score, are sensitive to the presence of outliers.

NUMERICAL METHODS FOR IDENTIFYING OUTLIERS

Interquartile range

- The first quartile (Q1) is the 25th percentile.
- The second quartile (Q2) is the 50th percentile.
- The third quartile (Q3) is the 75th percentile.
- The IQR is calculated as IQR = Q3 Q1 and may be interpreted to represent the range of the middle 50% of the data.
- A data value is an outlier if:
 - It is located 1.5*IQR or more below Q1
 - It is located 1.5*IQR or more above Q3.

Interquartile range - Example

- Set of 12 values {65,69,70,71,73,75,77,79,80,85,88,100}
- the 25th percentile was Q1 = 70
- the 75th percentile was Q3 = 80,
- Interquartile range: IQR = 80 - 70 = 10.
- half of all the test scores are between 70 and 80.
- A test score would be identified as an outlier if:
 - It is lower than Q1 1.5*IQR = 70 1.5*10 = 55
 - It is higher than Q3 + 1.5*IQR = 80 + 1.5*10 = 95.

SQL SERVER INTEGRATION SERVICES (SSIS)

Challenges of Data Integration

- Multiple sources with different formats.
- Structured, semi-structured, and unstructured data.
- Data feeds from source systems arriving at different times.
- Huge data volumes.
- Data quality.
- Transforming the data into a format that is meaningful to business analysts.

ETL – extract, transform, load

SSIS

- BI Design Studio installed with SQL Server.
- One or more packages can be part of an Integration Services Project.
- Layers
 - Connections to data sources.
 - Data Flow
 - Control Flow
 - Event Handlers

SSIS tutorials

- Introduction to SQL Server 2008 Integration Services, <u>http://www.accelebrate.com/sql_training/ssis_2008</u> tutorial.htm
- Tutorial: Creating a Simple ETL Package <u>http://msdn.microsoft.com/en-</u> <u>us/library/ms169917%28v=SQL.100%29.aspx</u>